Abstract

Heat generation measurements of the lithium-ion battery are crucial for the design of the battery thermal management system. Most previous works use the accelerating rate calorimeter (ARC) to test heat generation of batteries. However, utilizing ARC can only obtain heat generation of the battery operating under the adiabatic condition, deviating from common operation scenarios with heat dissipation. Besides, using ARC is difficult to measure heat generation of the high-rate operating battery because the battery temperature easily exceeds the maximum safety limit. To address these problems, we propose a novel method to obtain heat generation of cylindrical battery based on core and surface temperature measurements and select the 21700 cylindrical battery as the research object. Based on the method, total heat generation at 1 C discharge rate under the natural convection air cooling condition in the environmental chamber is about 3.2 kJ, and the average heat generation rate is about 0.9 W, while these two results measured by ARC are about 2.2 kJ and 0.6 W. This gap also reflects that different battery temperature histories have significant impacts on heat generation. In addition, using our approach, total heat generation at 2 C discharge rate measured in the environmental chamber is about 5.0 kJ, with the average heat generation rate being about 2.8 W. Heat generation results obtained by our method are approximate to the actual battery operation and have advantages in future applications.

References

1.
Wang
,
Y.
,
Bai
,
X.
,
Liu
,
C.
, and
Tan
,
J.
,
2021
, “
A Multi-Source Data Feature Fusion and Expert Knowledge Integration Approach on Lithium-Ion Battery Anomaly Detection
,”
ASME J. Electrochem. Energy Convers. Storage
,
19
(
2
), p.
021003
.
2.
Lu
,
M.
,
Zhang
,
X.
,
Ji
,
J.
,
Xu
,
X.
, and
Zhang
,
Y.
,
2020
, “
Research Progress on Power Battery Cooling Technology for Electric Vehicles
,”
J. Energy Storage
,
27
, p.
101155
.
3.
Cao
,
J.
,
Ling
,
Z.
,
Fang
,
X.
, and
Zhang
,
Z.
,
2020
, “
Delayed Liquid Cooling Strategy With Phase Change Material to Achieve High Temperature Uniformity of Li-Ion Battery Under High-Rate Discharge
,”
J. Power Sources
,
450
, p.
227673
.
4.
Bao
,
N.
,
Wei
,
L.
,
Ma
,
C.
,
Fan
,
Y.
, and
Li
,
T.
,
2021
, “
Multi-Objective Optimization of Structural Parameters of Air-Cooled System for Lithium Battery Pack Based on Surrogate Model
,”
ASME J. Electrochem. Energy Convers. Storage
,
18
(
4
), p.
040902
.
5.
Murashko
,
K. A.
,
Mityakov
,
A. V.
,
Mityakov
,
V. Y.
,
Sapozhnikov
,
S. Z.
,
Jokiniemi
,
J.
, and
Pyrhönen
,
J.
,
2016
, “
Determination of the Entropy Change Profile of a Cylindrical Lithium-Ion Battery by Heat Flux Measurements
,”
J. Power Sources
,
330
, pp.
61
69
.
6.
Lin
,
C.
,
Xu
,
S.
, and
Liu
,
J.
,
2018
, “
Measurement of Heat Generation in a 40 Ah LiFePO4 Prismatic Battery Using Accelerating Rate Calorimetry
,”
Int. J. Hydrogen Energy
,
43
(
17
), pp.
8375
8384
.
7.
Lin
,
C.
,
Xu
,
S.
,
Li
,
Z.
,
Li
,
B.
,
Chang
,
G.
, and
Liu
,
J.
,
2015
, “
Thermal Analysis of Large-Capacity LiFePO4 Power Batteries for Electric Vehicles
,”
J. Power Sources
,
294
, pp.
633
642
.
8.
Lin
,
C.
,
Wang
,
F.
,
Fan
,
B.
,
Ren
,
S.
,
Zhang
,
Y.
,
Han
,
L.
,
Liu
,
S.
, and
Xu
,
S.
,
2017
, “
Comparative Study on the Heat Generation Behavior of Lithium-Ion Batteries With Different Cathode Materials Using Accelerating Rate Calorimetry
,”
Energy Proc.
,
142
, pp.
3369
3374
.
9.
Feng
,
X.
,
Fang
,
M.
,
He
,
X.
,
Ouyang
,
M.
,
Lu
,
L.
,
Wang
,
H.
, and
Zhang
,
M.
,
2014
, “
Thermal Runaway Features of Large Format Prismatic Lithium Ion Battery Using Extended Volume Accelerating Rate Calorimetry
,”
J. Power Sources
,
255
, pp.
294
301
.
10.
Li
,
C.
,
Li
,
Y.
,
Srinivaas
,
S.
,
Zhang
,
J.
,
Qu
,
S.
, and
Li
,
W.
,
2021
, “
Mini-Channel Liquid Cooling System for Improving Heat Transfer Capacity and Thermal Uniformity in Battery Packs for Electric Vehicles
,”
ASME J. Electrochem. Energy Convers. Storage
,
18
(
3
), p.
030905
.
11.
Lu
,
W.
,
Yang
,
H.
, and
Prakash
,
J.
,
2006
, “
Determination of the Reversible and Irreversible Heats of LiNi0.8Co0.2O2/Mesocarbon Microbead Li-Ion Cell Reactions Using Isothermal Microcalorimetry
,”
Electrochim. Acta
,
51
(
7
), pp.
1322
1329
.
12.
Xiao
,
M.
, and
Choe
,
S.-Y.
,
2013
, “
Theoretical and Experimental Analysis of Heat Generations of a Pouch Type LiMn2O4/Carbon High Power Li-Polymer Battery
,”
J. Power Sources
,
241
, pp.
46
55
.
13.
Schuster
,
E.
,
Ziebert
,
C.
,
Melcher
,
A.
,
Rohde
,
M.
, and
Seifert
,
H. J.
,
2015
, “
Thermal Behavior and Electrochemical Heat Generation in a Commercial 40 Ah Lithium Ion Pouch Cell
,”
J. Power Sources
,
286
, pp.
580
589
.
14.
Xia
,
G.
,
Cao
,
L.
, and
Bi
,
G.
,
2017
, “
A Review on Battery Thermal Management in Electric Vehicle Application
,”
J. Power Sources
,
367
, pp.
90
105
.
15.
Chen
,
K.
,
Unsworth
,
G.
, and
Li
,
X.
,
2014
, “
Measurements of Heat Generation in Prismatic Li-Ion Batteries
,”
J. Power Sources
,
261
, pp.
28
37
.
16.
Drake
,
S. J.
,
Martin
,
M.
,
Wetz
,
D. A.
,
Ostanek
,
J. K.
,
Miller
,
S. P.
,
Heinzel
,
J. M.
, and
Jain
,
A.
,
2015
, “
Heat Generation Rate Measurement in a Li-Ion Cell at Large C-Rates Through Temperature and Heat Flux Measurements
,”
J. Power Sources
,
285
, pp.
266
273
.
17.
Mastali
,
M.
,
Foreman
,
E.
,
Modjtahedi
,
A.
,
Samadani
,
E.
,
Amirfazli
,
A.
,
Farhad
,
S.
,
Fraser
,
R. A.
, and
Fowler
,
M.
,
2018
, “
Electrochemical-Thermal Modeling and Experimental Validation of Commercial Graphite/LiFePO4 Pouch Lithium-Ion Batteries
,”
Int. J. Therm. Sci.
,
129
, pp.
218
230
.
18.
Quinn
,
J. B.
,
Waldmann
,
T.
,
Richter
,
K.
,
Kasper
,
M.
, and
Wohlfahrt-Mehrens
,
M.
,
2018
, “
Energy Density of Cylindrical Li-Ion Cells: A Comparison of Commercial 18650 to the 21700 Cells
,”
J. Electrochem. Soc.
,
165
(
14
),
A3284
A3291
.
19.
Kim
,
W.
,
2019
,
SAMSUNG SDI: Specification of Product INR21700-50E
.
20.
Offer
,
G.
,
Patel
,
Y.
,
Hales
,
A.
,
Bravo
,
D. L.
, and
Marzook
,
M.
,
2020
, “
Cool Metric for Lithium-Ion Batteries Could Spur Progress
,”
Nature
,
582
(
7813
), pp.
485
487
.
21.
INEEL
,
2003
,
DOE/ID-11070: FreedomCAR Battery Test Manual for Power-Assist Hybrid Electric Vehicles
,
U.S. Department of Energy
,
Idaho Falls
.
22.
Anthony
,
D.
,
Wong
,
D.
,
Wetz
,
D.
, and
Jain
,
A.
,
2017
, “
Non-Invasive Measurement of Internal Temperature of a Cylindrical Li-Ion Cell During High-Rate Discharge
,”
Int. J. Heat Mass Transfer
,
111
, pp.
223
231
.
23.
Drake
,
S. J.
,
Wetz
,
D. A.
,
Ostanek
,
J. K.
,
Miller
,
S. P.
,
Heinzel
,
J. M.
, and
Jain
,
A.
,
2014
, “
Measurement of Anisotropic Thermophysical Properties of Cylindrical Li-Ion Cells
,”
J. Power Sources
,
252
, pp.
298
304
.
24.
Forgez
,
C.
,
Do
,
D. V.
,
Friedrich
,
G.
,
Morcrette
,
M.
, and
Delacourt
,
C.
,
2010
, “
Thermal Modeling of a Cylindrical LiFePO4/Graphite Lithium-Ion Battery
,”
J. Power Sources
,
195
(
9
), pp.
2961
2968
.
25.
Wang
,
H.
,
Wang
,
Y.
,
Hu
,
F.
,
Shi
,
W.
,
Hu
,
X.
,
Li
,
H.
,
Chen
,
S.
,
Lin
,
H.
, and
Jiang
,
C.
,
2021
, “
Heat Generation Measurement and Thermal Management With Phase Change Material Based on Heat Flux for High Specific Energy Power Battery
,”
Appl. Therm. Eng.
,
194
, p.
117053
.
26.
Liu
,
H.
,
Wei
,
Z.
,
He
,
W.
, and
Zhao
,
J.
,
2017
, “
Thermal Issues About Li-Ion Batteries and Recent Progress in Battery Thermal Management Systems: A Review
,”
Energy Convers. Manage.
,
150
, pp.
304
330
.
27.
Bernardi
,
D.
,
Pawlikowski
,
E.
, and
Newman
,
J.
,
1985
, “
A General Energy Balance for Battery Systems
,”
J. Electrochem. Soc.
,
132
(
1
), pp.
5
12
.
28.
Ahmed
,
M. B.
,
Shaik
,
S.
, and
Jain
,
A.
,
2018
, “
Measurement of Radial Thermal Conductivity of a Cylinder Using a Time-Varying Heat Flux Method
,”
Int. J. Therm. Sci.
,
129
, pp.
301
308
.
You do not currently have access to this content.