Abstract

Predicting discharge capacities of lithium-ion batteries (LIBs) is essential for safe battery operation in electric vehicles (EVs). In this paper, a convolutional neural network-long short term memory (CNN-LSTM) approach is proposed to estimate the discharge capacity of LIBs. The parameters such as the voltage, current, temperature, and charge/discharge capacity are recorded from a battery management system (BMS) at various stages of the charge–discharge cycles. The experiments are conducted to obtain the data at different cycles, where each cycle is divided into four steps. Each testing cycle comprises charging, rest, discharging, and rest. In the predictive model, the initial layers are convolutional layers that help in feature extraction. Then, the long and short term memory layer is used to retain or forget related information. Finally, the prediction is completed by selecting the corresponding activation function. The evaluation model is established via the multiple train test split method. The lower values of weighted mean squared error suggest that discharge capacity estimation using CNN-LSTM is a reliable method. The CNN-LSTM approach can further be compiled in BMSs of EVs to get real-time status for state of charge and state of health values.

References

1.
Li
,
C. B.
,
Li
,
Y. S.
,
Gao
,
L.
,
Garg
,
A.
, and
Li
,
W.
,
2021
, “
Surrogate Model-Based Heat Dissipation Optimization of Air-Cooling Battery Packs Involving Herringbone Fins
,”
Int. J. Energy Res.
,
45
(
6
), pp.
8508
8523
.
2.
Li
,
W.
,
Garg
,
A.
,
Xiao
,
M.
,
Peng
,
X.
,
Le Phung
,
M. L.
,
Tran
,
V. M.
, and
Gao
,
L.
,
2020
, “
Intelligent Optimization Methodology of Battery Pack for Electric Vehicles: A Multidisciplinary Perspective
,”
Int. J. Energy Res.
,
44
(
12
), pp.
9686
9706
.
3.
Li
,
W.
,
Chen
,
S.
,
Peng
,
X.
,
Xia
,
M.
,
Gao
,
L.
,
Garg
,
A.
, and
Bao
,
N.
,
2019
, “
A Comprehensive Approach for the Clustering of Similar-Performance Cells for the Design of a Lithium-Ion Battery Module for Electric Vehicles
,”
Engineering
,
5
(
4
), pp.
795
802
.
4.
Cui
,
X.
,
Chen
,
S.
,
Xiao
,
M.
, and
Li
,
W.
,
2021
, “
A Computational Fluid Dynamics Coupled Multi-Objective Optimization Framework for Thermal System Design for Li-Ion Batteries With Metal Separators
,”
ASME J. Electrochem. Energy Convers. Storage
,
18
(
3
), p.
030903
.
5.
Chen
,
W. D.
,
Liang
,
J.
,
Yang
,
Z. H.
, and
Li
,
G.
,
2019
, “
A Review of Lithium-Ion Battery for Electric Vehicle Applications and Beyond
,”
Innov. Sol. Energy Trans.
,
158
, pp.
4363
4368
.
6.
Wang
,
N.
,
Li
,
C.
,
Li
,
W.
,
Huang
,
M.
, and
Qi
,
D.
,
2021
, “
Effect Analysis on Performance Enhancement of a Novel Air Cooling Battery Thermal Management System With Spoilers
,”
Appl. Therm. Eng.
,
192
, p.
116932
.
7.
Li
,
W.
,
Gao
,
L.
,
Garg
,
A.
, and
Xiao
,
M.
,
2020
, “
Multidisciplinary Robust Design Optimization Considering Parameter and Metamodeling Uncertainties
,”
Eng. Comput. Germany
,
11
, pp.
1
18
.
8.
Li
,
C.
,
Li
,
Y.
,
Srinivaas
,
S.
,
Zhang
,
J.
,
Qu
,
S.
, and
Li
,
W.
,
2021
, “
Mini-Channel Liquid Cooling System for Improving Heat Transfer Capacity and Thermal Uniformity in Battery Packs for Electric Vehicles
,”
ASME J. Electrochem. Energy Convers. Storage
,
18
(
3
), p.
030905
.
9.
Yang
,
C.
,
Wang
,
X.
,
Fang
,
Q.
,
Dai
,
H.
,
Cao
,
Y.
, and
Wei
,
X.
,
2020
, “
An Online SOC and Capacity Estimation Method for Aged Lithium-Ion Battery Pack Considering Cell Inconsistency
,”
J. Energy Storage
,
29
, p.
101250
.
10.
Li
,
W.
,
Xiao
,
M.
,
Garg
,
A.
, and
Gao
,
L.
,
2021
, “
A New Approach to Solve Uncertain Multidisciplinary Design Optimization Based on Conditional Value at Risk
,”
IEEE Trans. Autom. Sci. Eng.
,
18
(
1
), pp.
356
368
.
11.
Garg
,
A.
,
Shaosen
,
S.
,
Gao
,
L.
,
Peng
,
X. B.
, and
Baredar
,
P.
,
2020
, “
Aging Model Development Based on Multidisciplinary Parameters for Lithium-Ion Batteries
,”
Int. J. Energy Res.
,
44
(
4
), pp.
2801
2818
.
12.
Honkura
,
K.
,
Takahashi
,
K.
, and
Horiba
,
T.
,
2011
, “
Capacity-Fading Prediction of Lithium-Ion Batteries Based on Discharge Curves Analysis
,”
J. Power Sources
,
196
(
23
), pp.
10141
10147
.
13.
Li
,
X. Y.
,
Zhang
,
L.
,
Wang
,
Z. P.
, and
Dong
,
P.
,
2019
, “
Remaining Useful Life Prediction for Lithium-Ion Batteries Based on a Hybrid Model Combining the Long Short-Term Memory and Elman Neural Networks
,”
J. Energy Storage
,
21
, pp.
510
518
.
14.
Dai
,
H. D.
,
Zhao
,
G. C.
,
Lin
,
M. Q.
,
Wu
,
J.
, and
Zheng
,
G. F.
,
2019
, “
A Novel Estimation Method for the State of Health of Lithium-Ion Battery Using Prior Knowledge-Based Neural Network and Markov Chain
,”
IEEE Trans. Ind. Electron.
,
66
(
10
), pp.
7706
7716
.
15.
Wu
,
J.
,
Zhang
,
C. B.
, and
Chen
,
Z. H.
,
2016
, “
An Online Method for Lithium-Ion Battery Remaining Useful Life Estimation Using Importance Sampling and Neural Networks
,”
Appl. Energy
,
173
, pp.
134
140
.
16.
Zhang
,
Y. Z.
,
Xiong
,
R.
,
He
,
H. W.
, and
Pecht
,
M. G.
,
2019
, “
Lithium-Ion Battery Remaining Useful Life Prediction With Box-Cox Transformation and Monte Carlo Simulation
,”
IEEE Trans. Ind. Electron.
,
66
(
2
), pp.
1585
1597
.
17.
Zhang
,
C. L.
,
He
,
Y. G.
,
Yuan
,
L. F.
, and
Xiang
,
S.
,
2017
, “
Capacity Prognostics of Lithium-Ion Batteries Using EMD Denoising and Multiple Kernel RVM
,”
IEEE Access
,
5
, pp.
12061
12070
.
18.
Wei
,
J. W.
,
Dong
,
G. Z.
, and
Chen
,
Z. H.
,
2018
, “
Remaining Useful Life Prediction and State of Health Diagnosis for Lithium-Ion Batteries Using Particle Filter and Support Vector Regression
,”
IEEE Trans. Ind. Electron.
,
65
(
7
), pp.
5634
5643
.
19.
Song
,
Y. C.
,
Liu
,
D. T.
,
Yang
,
C.
, and
Peng
,
Y.
,
2017
, “
Data-Driven Hybrid Remaining Useful Life Estimation Approach for Spacecraft Lithium-Ion Battery
,”
Microelectron. Reliab.
,
75
, pp.
142
153
.
20.
Wei
,
Z. B.
,
Zhao
,
J. Y.
,
Xiong
,
R.
,
Dong
,
G. Z.
,
Pou
,
J.
, and
Tseng
,
K. J.
,
2019
, “
Online Estimation of Power Capacity With Noise Effect Attenuation for Lithium-Ion Battery
,”
IEEE Trans. Ind. Electron.
,
66
(
7
), pp.
5724
5735
.
21.
Li
,
X. Y.
,
Wang
,
Z. P.
, and
Yan
,
J. Y.
,
2019
, “
Prognostic Health Condition for Lithium Battery Using the Partial Incremental Capacity and Gaussian Process Regression
,”
J. Power Sources
,
421
, pp.
56
67
.
22.
Dai
,
H. F.
,
Yu
,
C. C.
,
Wei
,
X. Z.
, and
Sun
,
Z. C.
,
2017
, “
State of Charge Estimation for Lithium-Ion Pouch Batteries Based on Stress Measurement
,”
Energy
,
129
, pp.
16
27
.
23.
Andre
,
D.
,
Appel
,
C.
,
Soczka-Guth
,
T.
, and
Sauer
,
D. U.
,
2013
, “
Advanced Mathematical Methods of SOC and SOH Estimation for Lithium-Ion Batteries
,”
J. Power Sources
,
224
, pp.
20
27
.
24.
He
,
W.
,
Williard
,
N.
,
Osterman
,
M.
, and
Pecht
,
M.
,
2011
, “
Prognostics of Lithium-Ion Batteries Based on Dempster-Shafer Theory and the Bayesian Monte Carlo Method
,”
J. Power Sources
,
196
(
23
), pp.
10314
10321
.
25.
Zheng
,
L. F.
,
Zhu
,
J. G.
,
Lu
,
D. D. C.
,
Wang
,
G. X.
, and
He
,
T. T.
,
2018
, “
Incremental Capacity Analysis and Differential Voltage Analysis Based State of Charge and Capacity Estimation for Lithium-Ion Batteries
,”
Energy
,
150
, pp.
759
769
.
26.
Yang
,
G. D.
,
Li
,
J. Q.
,
Fu
,
Z. J.
, and
Guo
,
L.
,
2018
, “
Adaptive State of Charge Estimation of Lithium-Ion Battery Based on Battery Capacity Degradation Model
,”
Clean. Energy Clean. Cities
,
152
, pp.
514
519
.
27.
Stroe
,
D. I.
, and
Schaltz
,
E.
,
2020
, “
Lithium-Ion Battery State-of-Health Estimation Using the Incremental Capacity Analysis Technique
,”
IEEE Trans. Ind. Appl.
,
56
(
1
), pp.
678
685
.
28.
Wu
,
Y. C.
, and
Feng
,
J. W.
,
2018
, “
Development and Application of Artificial Neural Network
,”
Wireless Pers. Commun.
,
102
(
2
), pp.
1645
1656
.
29.
Chen
,
Z.
,
Song
,
X. Y.
,
Xiao
,
R. X.
,
Shen
,
J. W.
, and
Xia
,
X. L.
,
2018
, “
State of Health Estimation for Lithium-Ion Battery Based on Long Short Term Memory Networks
,”
2018 Joint International Conference on Energy, Ecology and Environment (ICEEE 2018) and International Conference on Electric and Intelligent Vehicles (ICEIV 2018)
,
Melbourne, Australia
, pp.
1
6
.
30.
Song
,
X.
,
Yang
,
F.
,
Wang
,
D.
, and
Tsui
,
K.-L.
,
2019
, “
Combined CNN-LSTM Network for State-of-Charge Estimation of Lithium-Ion Batteries
,”
IEEE Access
,
7
, pp.
88894
88902
.
31.
Wang
,
M. Y.
,
Hu
,
W. F.
,
Jiang
,
Y. F.
,
Su
,
F.
, and
Fang
,
Z.
,
2021
, “
Internal Temperature Prediction of Ternary Polymer Lithium-Ion Battery Pack Based on CNN and Virtual Thermal Sensor Technology
,”
Int. J. Energy Res.
,
45
(
9
), pp.
13681
13691
.
32.
Park
,
K.
,
Choi
,
Y.
,
Choi
,
W. J.
,
Ryu
,
H. Y.
, and
Kim
,
H.
,
2020
, “
LSTM-Based Battery Remaining Useful Life Prediction With Multi-Channel Charging Profiles
,”
IEEE Access
,
8
, pp.
20786
20798
.
33.
Garg
,
A.
,
Yun
,
L.
,
Shaosen
,
S.
,
Goya
,
A.
,
Niu
,
X.
,
Gao
,
L.
,
Bhalerao
,
Y.
, and
Panda
,
B.
,
2019
, “
A Combined Experimental-Numerical Framework for Residual Energy Determination in Spent Lithium-Ion Battery Packs
,”
Int. J. Energy Res.
,
43
(
9
), pp.
4390
4402
.
You do not currently have access to this content.