Abstract

The interfacial reactivity and resistance between the cathode and the solid-state electrolyte (SSE) of a solid-state battery (SSB) usually lead to quite poor cycling performance and fast capacity decay. Hence, cathode coatings are generally applied to reduce cathode/SSE interfacial impedance in SSBs. In recent years, based on high-throughput screening, several promising coating materials have been recognized. In the present work, density functional theory (DFT) calculations were conducted on LiH2PO4 and LiTi2(PO4)3 to examine their characteristics as potential cathode coating materials. It was found that both of these materials had high oxidation potentials (>4.5 V), good chemical stability against the electrolyte and the cathode, reasonable ionic conductivity, and wide bandgaps; therefore, they can be used as outstanding cathode coating materials for SSBs.

References

1.
Quartarone
,
E.
, and
Mustarelli
,
P.
,
2011
, “
Electrolytes for Solid-State Lithium Rechargeable Batteries: Recent Advances and Perspectives
,”
Chem. Soc. Rev.
,
40
(
5
), pp.
2525
2540
.
2.
Fan
,
L.
,
Wei
,
S.
,
Li
,
S.
,
Li
,
Q.
, and
Lu
,
Y.
,
2018
, “
Recent Progress of the Solid-State Electrolytes for High-Energy Metal-Based Batteries
,”
Adv. Energy Mater.
,
8
(
11
), p.
1702657
.
3.
Murugan
,
R.
,
Thangadurai
,
V.
, and
Weppner
,
W.
,
2007
, “
Fast Lithium Ion Conduction in Garnet-Type Li7La3Zr2O12
,”
Angew. Chem. Int. Ed.
,
46
(
41
), pp.
7778
7781
.
4.
Ohta
,
S.
,
Kobayashi
,
T.
, and
Asaoka
,
T.
,
2011
, “
High Lithium Ionic Conductivity in the Garnet Type Oxide Li7-XLa3(Zr2-X, NbX)O12 (X = 0–2)
,”
J. Power Sources
,
196
(
6
), pp.
3342
3345
.
5.
Allen
,
J. L.
,
Wolfenstine
,
J.
,
Rangasamy
,
E.
, and
Sakamoto
,
J.
,
2012
, “
Effect of Substitution (Ta, Al, Ga) on the Conductivity of Li7La3Zr2O12
,”
J. Power Sources
,
206
(
206
), pp.
315
319
.
6.
Yamauchi
,
A.
,
Sakuda
,
A.
,
Hayashi
,
A.
, and
Tatsumisago
,
M.
,
2013
, “
Preparation and Ionic Conductivities of (100-x)(0.75Li2S·0.25P2S5).xLiBH4 Glass Electrolytes
,”
J. Power Sources
,
244
(
15
), pp.
707
710
.
7.
Seino
,
Y.
,
Ota
,
T.
,
Takada
,
K.
,
Hayashi
,
A.
, and
Tatsumisago
,
M.
,
2014
, “
A Sulphide Lithium Super Ion Conductor is Superior to Liquid Ion Conductors for Use in Rechargeable Batteries
,”
Energy Environ. Sci.
,
7
(
2
), pp.
627
631
.
8.
Kamaya
,
N.
,
Homma
,
K.
,
Yamakawa
,
Y.
,
Hirayama
,
M.
,
Kanno
,
R.
,
Yonemura
,
M.
,
Kamiyama
,
T.
, et al
,
2011
, “
A Lithium Superionic Conductor
,”
Nat. Mater.
,
10
(
9
), pp.
682
686
.
9.
Whiteley
,
J. M.
,
Woo
,
J. H.
,
Hu
,
E.
,
Nam
,
K.-W.
, and
Lee
,
S.-H.
,
2014
, “
Empowering the Lithium Metal Battery Through a Silicon-Based Superionic Conductor
,”
J. Electrochem. Soc.
,
161
(
12
), pp.
A1812
A1817
.
10.
Kuhn
,
A.
,
Gerbig
,
O.
,
Zhu
,
C.
,
Falkenberg
,
F.
,
Maier
,
J.
, and
Lotsch
,
B. V.
,
2014
, “
A New Ultrafast Superionic Li-Conductor: Ion Dynamics in Li11Si2PS12 and Comparison With Other Tetragonal LGPS-Type Electrolytes
,”
Phys. Chem. Chem. Phys.
,
16
(
28
), pp.
14669
14674
.
11.
Bron
,
P.
,
Johansson
,
S.
,
Zick
,
K.
,
Schmedt auf der Günne
,
J.
,
Dehnen
,
S.
, and
Roling
,
B.
,
2013
, “
Li10SnP2S12: An Affordable Lithium Superionic Conductor
,”
J. Am. Chem. Soc.
,
135
(
42
), pp.
15694
15697
.
12.
Kato
,
Y.
,
Hori
,
S.
,
Saito
,
T.
,
Suzuki
,
K.
,
Hirayama
,
M.
,
Mitsui
,
A.
,
Yonemura
,
M.
,
Iba
,
H.
, and
Kanno
,
R.
,
2016
, “
High-Power All-Solid State Batteries Using Sulfide Superionic Conductors
,”
Nat. Energy
,
1
(
4
), p.
16030
.
13.
Wenzel
,
S.
,
Randau
,
S.
,
Leichtweiß
,
T.
,
Weber
,
D. A.
,
Sann
,
J.
,
Zeier
,
W. G.
, and
Janek
,
J.
,
2016
, “
Direct Observation of the Interfacial Instability of the Fast Ionic Conductor Li10GeP2S12 at the Lithium Metal Anode
,”
Chem. Mater.
,
28
(
7
), pp.
2400
2407
.
14.
Sakuda
,
A.
,
Hayashi
,
A.
, and
Tatsumisago
,
M.
,
2010
, “
Interfacial Observation Between LiCoO2 Electrode and Li2S-P2S5 Solid Electrolytes of All-Solid-State Lithium Secondary Batteries Using Transmission Electron Microscopy
,”
Chem. Mater.
,
22
(
3
), pp.
949
956
.
15.
Kim
,
K. H.
,
Iriyama
,
Y.
,
Yamamoto
,
K.
,
Kumazaki
,
S.
,
Asaka
,
T.
,
Tanabe
,
K.
,
Fisher
,
C. A. J.
,
Hirayama
,
T.
,
Murugan
,
R.
, and
Ogumi
,
Z.
,
2011
, “
Characterization of the Interface Between LiCoO2 and Li7La3Zr2O12 in an All-Solid-State Rechargeable Lithium Battery
,”
J. Power Sources
,
196
(
2
), pp.
764
767
.
16.
Koerver
,
R.
,
Aygün
,
I.
,
Leichtweiß
,
T.
,
Dietrich
,
C.
,
Zhang
,
W.
,
Binder
,
J. O.
,
Hartmann
,
P.
,
Zeier
,
W. G.
, and
Janek
,
J.
,
2017
, “
Capacity Fade in Solid-State Batteries: Interphase Formation and Chemomechanical Processes in Nickel-Rich Layered Oxide Cathodes and Lithium Thiophosphate Solid Electrolytes
,”
Chem. Mater.
,
29
(
13
), pp.
5574
5582
.
17.
Hakari
,
T.
,
Deguchi
,
M.
,
Mitsuhara
,
K.
,
Ohta
,
T.
,
Saito
,
K.
,
Orikasa
,
Y.
,
Uchimoto
,
Y.
,
Kowada
,
Y.
,
Hayashi
,
A.
, and
Tatsumisago
,
M.
,
2017
, “
Structural and Electronic-State Changes of a Sulfide Solid Electrolyte During the Li Deinsertion–Insertion Processes
,”
Chem. Mater.
,
29
(
11
), pp.
4768
4774
.
18.
Zhang
,
W.
,
Leichtweiß
,
T.
,
Culver
,
S. P.
,
Koerver
,
R.
,
Das
,
D.
,
Weber
,
D. A.
,
Zeier
,
W. G.
, and
Janek
,
J.
,
2017
, “
The Detrimental Effects of Carbon Additives in Li10GeP2S12-Based Solid-State Batteries
,”
ACS Appl. Mater. Interfaces
,
9
(
41
), pp.
35888
35896
.
19.
Yoon
,
K.
,
Kim
,
J. J.
,
Seong
,
W. M.
,
Lee
,
M. H.
, and
Kang
,
K.
,
2018
, “
Investigation on the Interface Between Li10GeP2S12 Electrolyte and Carbon Conductive Agents in All-Solid-State Lithium Battery
,”
Sci. Rep.
,
8
(
1
), p.
8066
.
20.
Han
,
X.
,
Gong
,
Y.
,
Fu
,
K.
,
He
,
X.
,
Hitz
,
G. T.
,
Dai
,
J.
,
Pearse
,
A.
, et al
,
2017
, “
Negating Interfacial Impedance in Garnet-Based Solid-State Li Metal Batteries
,”
Nat. Mater.
,
16
(
5
), pp.
572
579
.
21.
Ohta
,
N.
,
Takada
,
K.
,
Zhang
,
L.
,
Ma
,
R.
,
Osada
,
M.
, and
Sasaki
,
T.
,
2006
, “
Enhancement of the High-Rate Capability of Solid-State Lithium Batteries by Nanoscale Interfacial Modification
,”
Adv. Mater.
,
18
(
17
), pp.
2226
2229
.
22.
Aykol
,
M.
,
Kim
,
S.
,
Hegde
,
V. I.
,
Snydacker
,
D.
,
Lu
,
Z.
,
Hao
,
S.
,
Kirklin
,
S.
,
Morgan
,
D.
, and
Wolverton
,
C.
,
2016
, “
High-Throughput Computational Design of Cathode Coatings for Li-Ion Batteries
,”
Nat. Commun.
,
7
(
1
), p.
13779
.
23.
Xiao
,
Y.
,
Miara
,
L. J.
,
Wang
,
Y.
, and
Ceder
,
G.
,
2019
, “
Computational Screening of Cathode Coatings for Solid-State Batteries
,”
Joule
,
3
(
5
), pp.
1252
1275
.
24.
Hutter
,
J.
,
Iannuzzi
,
M.
,
Schiffmann
,
F.
, and
VandeVondele
,
J.
,
2014
, “
CP2K: Atomistic Simulations of Condensed Matter Systems
,”
WIREs Comput. Mol. Sci.
,
4
(
1
), pp.
15
25
.
25.
Goedecker
,
S.
,
Teter
,
M.
, and
Hutter
,
J.
,
1996
, “
Separable Dual-Space Gaussian Pseudopotentials
,”
Phys. Rev. B
,
54
(
3
), pp.
1703
1710
.
26.
Perdew
,
J. P.
,
Burke
,
K.
, and
Ernzerhof
,
M.
,
1996
, “
Generalized Gradient Approximation Made Simple
,”
Phys. Rev. Lett.
,
77
(
18
), pp.
3865
3868
.
27.
Heyd
,
J.
,
Scuseria
,
G. E.
, and
Ernzerhof
,
M.
,
2003
, “
Hybrid Functionals Based on a Screened Coulomb Potential
,”
J. Chem. Phys.
,
118
(
18
), pp.
8207
8215
.
28.
Heyd
,
J.
,
Scuseria
,
G. E.
, and
Ernzerhof
,
M.
,
2006
, “
Erratum: “Hybrid Functionals Based on a Screened Coulomb Potential” [J. Chem. Phys. 118, 8207 (2003)]
,”
J. Chem. Phys.
,
124
(
21
), p.
219906
.
29.
Jindal
,
K. S.
,
2018
,
Annual Reports in Computational Chemistry
, Vol.
14
,
Elsevier
,
Amsterdam, The Netherlands
, pp.
95
122
.
30.
Ong
,
S. P.
,
Mo
,
Y.
,
Richards
,
W. D.
,
Miara
,
L.
,
Lee
,
H. S.
, and
Ceder
,
G.
,
2013
, “
Phase Stability, Electrochemical Stability and Ionic Conductivity of the Li10±1MP2X12(M = Ge, Si, Sn, Al or P, and X = O, S or Se) Family of Superionic Conductors
,”
Energy Environ. Sci.
,
6
(
1
), pp.
148
156
.
31.
Bachman
,
J. C.
,
Muy
,
S.
,
Grimaud
,
A.
,
Chang
,
H. H.
,
Pour
,
N.
,
Lux
,
S.
,
Paschos
,
F.
, et al
,
2016
, “
Inorganic Solid-State Electrolytes for Lithium Batteries: Mechanisms and Properties Governing Ion Conduction
,”
Chem. Rev.
,
116
(
1
), pp.
140
162
.
32.
Jain
,
A.
,
Ong
,
S. P.
,
Hautier
,
G.
,
Chen
,
W.
,
Richards
,
W. D.
,
Dacek
,
S.
,
Cholia
,
S.
, et al
,
2013
, “
The Materials Project: A Materials Genome Approach to Accelerating Materials Innovation
,”
APL Mater.
,
1
(
1
), p.
011002
.
33.
Wang
,
Z.
, and
Shao
,
G.
,
2017
, “
Theoretical Design of Solid Electrolytes With Superb Ionic Conductivity: Alloying Effect on Li+ Transportation in Cubic Li6PA5X Chalcogenides
,”
J. Mater. Chem. A
,
5
(
41
), pp.
21846
21857
.
34.
Xu
,
H.
,
Yu
,
Y.
,
Wang
,
Z.
, and
Shao
,
G.
,
2019
, “
A Theoretical Approach to Address Interfacial Problems in All-Solid-State Lithium Ion Batteries: Tuning Materials Chemistry for Electrolyte and Buffer Coatings Based on Li6PA5Cl Hali-Chalcogenides
,”
J. Mater. Chem. A
,
7
(
10
), pp.
5239
5249
.
35.
Auvergniot
,
J.
,
Cassel
,
A.
,
Ledeuil
,
J.-B.
,
Viallet
,
V.
,
Seznec
,
V.
, and
Dedryvère
,
R.
,
2017
, “
Interface Stability of Argyrodite Li6PS5Cl Toward LiCoO2, LiNi1/3Co1/3Mn1/3O2, and LiMn2O4 in Bulk All-Solid-State Batteries
,”
Chem. Mater.
,
29
(
9
), pp.
3883
3890
.
36.
Banerjee
,
A.
,
Wang
,
X.
,
Fang
,
C.
,
Wu
,
E. A.
, and
Meng
,
Y. S.
,
2020
, “
Interfaces and Interphases in All-Solid-State Batteries With Inorganic Solid Electrolytes
,”
Chem. Rev.
,
120
(
14
), pp.
6878
6933
.
You do not currently have access to this content.