Abstract

Water splitting is considered as a potential sustainable and green technology for producing mass hydrogen and oxygen. A cost-effective self-supported stable electrocatalyst with excellent electrocatalytic performance in a wide pH range is greatly required for water splitting. This work reports on the synthesis and anchoring of Fe1CoxNiyP nanoparticles on vertically aligned reduced graphene oxide array (VrGO) via electroless plating. The catalytic activity of Fe1CoxNiyP nanoparticles is tuned finely by tailoring the cationic ratio of Co and Ni. Fe1Co2Ni1P/VrGO exhibits the lowest overpotential (109 and 139 mV) at 10 mA cm−2 and lowest tafel slope (133 and 31 mV dec−1) for hydrogen evolution reaction in 1.0 M KOH and 0.5 M H2SO4, respectively. Fe1Co1Ni2P/VrGO exhibits the lowest overpotential (342 mV) at 10 mA cm−2 with lowest tafel slope (60 mV dec−1) for oxygen evolution reaction. The enhanced performance of the electrocatalyst is attributed to improved electrical conductivity, synergistic effects, and beneficial electronic states caused by the appropriate atomic ratio of Co and Ni in the bifunctional electrocatalyst. This study helps to explore the effect of variable cationic ratio in the cost-effective ternary iron group metal phosphides electrocatalysts to achieve enhanced electrocatalytic performance for water splitting in a wide pH range.

References

1.
Zou
,
X.
, and
Zhang
,
Y.
,
2015
, “
Noble Metal-Free Hydrogen Evolution Catalysts for Water Splitting
,”
Chem. Soc. Rev.
,
44
(
15
), pp.
5148
5180
.
2.
Xia
,
B.
,
Yan
,
Y.
,
Li
,
N.
,
Wu
,
H.
,
Lou
,
X.
, and
Wang
,
X.
,
2016
, “
A Metal-Organic Framework Derived Bifunctional Oxygen Electrocatalyst
,”
Nat. Energy
,
1
(
1
), pp.
15006
15014
.
3.
Suen
,
N.
,
Hung
,
S.
,
Quan
,
Q.
,
Zhang
,
N.
,
Xu
,
Y.
, and
Chen
,
H.
,
2017
, “
Electrocatalysis for the Oxygen Evolution Reaction: Recent Development and Future Perspectives
,”
Chem. Soc. Rev.
,
46
(
2
), pp.
337
365
.
4.
Pu
,
Z.
,
Amiinu
,
I.
,
Kou
,
Z.
,
Li
,
W.
, and
Mu
,
S.
,
2017
, “
RuP2-Based Catalysts With Platinum-Like Activity and Higher Durability for Hydrogen Evolution Reaction at All pH Values
,”
Angew. Chem. Int. Ed.
,
56
(
38
), pp.
11559
11564
.
5.
Dinh
,
K.
,
Zheng
,
P.
,
Dai
,
Z.
,
Zhang
,
Y.
,
Dangol
,
R.
,
Zheng
,
Y.
,
Li
,
B.
,
Zong
,
Y.
, and
Yan
,
Q.
,
2018
, “
Ultrathin Porous NiFeV Ternary Layer Hydroxide Nanosheets as a Highly Efficient Bifunctional Electrocatalyst for Overall Water Splitting
,”
Small
,
14
(
8
), pp.
1703257
1903286
.
6.
Sun
,
H.
,
Xu
,
X.
,
Yan
,
Z.
,
Chen
,
X.
,
Jiao
,
L.
,
Cheng
,
F.
, and
Chen
,
J.
,
2018
, “
Superhydrophilic Amorphous Co-B-P Nanosheet Electrocatalysts With Pt-Like Activity and Durability for the Hydrogen Evolution Reaction
,”
J. Mater. Chem. A
,
6
(
44
), pp.
22062
22069
.
7.
Pu
,
Z.
,
Saana Amiinu
,
I.
,
Wang
,
M.
,
Yang
,
Y.
, and
Mu
,
S.
,
2016
, “
Semimetallic MoP2: An Active and Stable Hydrogen Evolution Electrocatalyst Over the Whole pH Range
,”
Nanoscale
,
8
(
16
), pp.
8500
8504
.
8.
Zhang
,
F.
,
Wang
,
J.
,
Luo
,
J.
,
Liu
,
R.
,
Zhang
,
Z.
,
He
,
C.
, and
Lu
,
T.
,
2018
, “
Extraction of Nickel From NiFe-LDH Into Ni2P@NiFe Hydroxide as a Bifunctional Electrocatalyst for Efficient Overall Water Splitting
,”
Chem. Sci.
,
9
(
5
), pp.
1375
1384
.
9.
Lu
,
M.
,
Wang
,
L.
,
Jiang
,
B.
, and
Zheng
,
J.
,
2019
, “
An Efficient Electrocatalyst by Electroless Cobalt-Nickel-Phosphorus Alloy Plating on Three-Dimensional Graphene for Hydrogen Evolution Reaction
,”
J. Electrochem. Soc.
,
166
(
2
), pp.
D69
D76
.
10.
Xu
,
J.
,
Li
,
J.
,
Xiong
,
D.
,
Zhang
,
B.
,
Liu
,
Y.
,
Wu
,
K.
,
Amorim
,
I.
,
Li
,
W.
, and
Liu
,
L.
,
2018
, “
Trends in Activity for the Oxygen Evolution Reaction on Transition Metal (M = Fe, Co, Ni) Phosphide Pre-Catalysts
,”
Chem. Sci.
,
9
(
14
), pp.
3470
3476
.
11.
Yu
,
J.
,
Cheng
,
G.
, and
Luo
,
W.
,
2017
, “
Hierarchical NiFeP Microflowers Directly Grown on Ni Foam for Efficient Electrocatalytic Oxygen Evolution
,”
J. Mater. Chem. A
,
5
(
22
), pp.
11229
11235
.
12.
Wang
,
D.
,
Gong
,
M.
,
Chou
,
H.
,
Pan
,
C.
,
Chen
,
H.
,
Wu
,
Y.
,
Lin
,
M.
,
Guan
,
M.
,
Yang
,
J.
, and
Chen
,
C.
,
2015
, “
Highly Active and Stable Hybrid Catalyst of Cobalt-Doped FeS2 Nanosheets-Carbon Nanotubes for Hydrogen Evolution Reaction
,”
J. Am. Chem. Soc.
,
137
(
4
), pp.
1587
1592
.
13.
Cao
,
L.
,
Hu
,
Y.
,
Tang
,
S.
,
Iijin
,
A.
,
Wang
,
J.
,
Zhang
,
Z.
, and
Lu
,
T.
,
2018
, “
Fe-CoP Electrocatalyst Derived From a Bimetallic Prussian Blue Analogue for Large-Current-Density Oxygen Evolution and Overall Water Splitting
,”
Adv. Sci.
,
5
(
10
), p.
1800949
.
14.
Zhang
,
G.
,
Wang
,
B.
,
Bi
,
J.
,
Fang
,
D.
, and
Yang
,
S.
,
2019
, “
Constructing Ultrathin CoP Nanomeshes by Er-Doping for Highly Efficient Bifunctional Electrocatalysts for Overall Water Splitting
,”
J. Mater. Chem. A
,
7
(
10
), pp.
5769
5778
.
15.
Wu
,
R.
,
Xiao
,
B.
,
Gao
,
Q.
,
Zheng
,
Y.
,
Zheng
,
X.
,
Zhu
,
J.
,
Gao
,
M.
, and
Yu
,
S.
,
2018
, “
A Janus Nickel Cobalt Phosphide Catalyst for High-Efficiency Neutral-pH Water Splitting
,”
Angew. Chem. Int. Ed.
,
57
(
47
), pp.
15445
15449
.
16.
Yu
,
J.
,
Li
,
Q.
,
Li
,
Y.
,
Xu
,
C.
,
Zhen
,
L.
,
Dravid
,
V.
, and
Wu
,
J.
,
2016
, “
Ternary Metal Phosphide With Triple-Layered Structure as a Low-Cost and Efficient Electrocatalyst for Bifunctional Water Splitting
,”
Adv. Funct. Mater.
,
26
(
42
), pp.
7644
7651
.
17.
Corrigan
,
D. A.
,
1987
, “
The Catalysis of the Oxygen Evolution Reaction by Iron Impurities in Thin Film Nickel Oxide Electrodes
,”
J. Electrochem. Soc.
,
134
(
2
), pp.
377
384
.
18.
Honorata
,
K.
,
Anna
,
W.
,
Izabella
,
K.
,
Maciej
,
J.
,
Anna
,
K.
,
Michał
,
M.
,
Krzysztof
,
M.
, and
Joanna
,
W.
,
2019
, “
Electroless Deposition of Ni-P and Ni-P-Re Alloys From Acidic Hypophosphite Bath
,”
Electrochim. Acta
,
303
, pp.
157
166
.
19.
Sumi
,
V.
,
Sha
,
M.
,
Arunima
,
S.
, and
Shibli
,
S.
,
2019
, “
Development of a Novel Method of NiCoP Alloy Coating for Electrocatalytic Hydrogen Evolution Reaction in Alkaline Media
,”
Electrochim. Acta
,
303
, pp.
67
77
.
20.
Hummers
,
W.
, and
Offeman
,
R.
,
1958
, “
Preparation of Graphitic Oxide
,”
J. Am. Chem. Soc.
,
80
(
6
), pp.
1334
1339
.
21.
Zhang
,
P.
,
Li
,
J.
,
Lv
,
L.
,
Zhao
,
Y.
, and
Qu
,
L.
,
2017
, “
Vertically Aligned Graphene Sheets Membrane for Highly Efficient Solar Thermal Generation of Clean Water
,”
ACS Nano
,
11
(
5
), pp.
5087
5093
.
22.
Tian
,
L.
,
Yan
,
X.
, and
Chen
,
X.
,
2016
, “
Electrochemical Activity of Iron Phosphide Nanoparticles in Hydrogen Evolution Reaction
,”
ACS Catal.
,
6
(
8
), pp.
5441
5448
.
23.
Zhang
,
Y.
,
Zhang
,
H.
,
Feng
,
Y.
,
Liu
,
L.
, and
Wang
,
Y.
,
2015
, “
Unique Fe2P Nanoparticles Enveloped in Sandwichlike Graphited Carbon Sheets as Excellent Hydrogen Evolution Reaction Catalyst and Lithium-Ion Battery Anode
,”
ACS Appl. Mater. Interfaces
,
7
(
48
), pp.
26684
26690
.
24.
Pu
,
Z.
,
Zhang
,
C.
,
Amiinu
,
I.
,
Li
,
W.
,
Wu
,
L.
, and
Mu
,
S.
,
2017
, “
General Strategy for the Synthesis of Transition-Metal Phosphide/N-Doped Carbon Frameworks for Hydrogen and Oxygen Evolution
,”
ACS Appl. Mater. Interfaces
,
9
(
19
), pp.
16187
16193
.
25.
Zhang
,
L.
,
Chang
,
L.
,
Hsu
,
C.
,
Chang
,
C.
, and
Lu
,
S.
,
2017
, “
Hollow Nanocubes Composed of Well-Dispersed Mixed Metal-Rich Phosphides in N-Doped Carbon as Highly Efficient and Durable Electrocatalysts for the Oxygen Evolution Reaction at High Current Densities
,”
J. Mater. Chem. A
,
5
(
37
), pp.
19656
19663
.
26.
Wang
,
P.
,
Pu
,
Z.
,
Li
,
Y.
,
Wu
,
L.
,
Tu
,
Z.
,
Jiang
,
M.
,
Kou
,
Z.
,
Amiinu
,
I.
, and
Mu
,
S.
,
2017
, “
Iron-Doped Nickel Phosphide Nanosheet Arrays: An Efficient Bifunctional Electrocatalyst for Water Splitting
,”
ACS Appl. Mater. Interfaces
,
9
(
31
), pp.
26001
26007
.
27.
Yu
,
X.
,
Feng
,
Y.
,
Guan
,
B.
,
Lou
,
X.
, and
Paik
,
U.
,
2016
, “
Carbon Coated Porous Nickel Phosphides Nanoplates for Highly Efficient Oxygen Evolution Reaction
,”
Energy Environ. Sci.
,
9
(
4
), pp.
1246
1250
.
28.
Chu
,
K.
,
Wang
,
F.
,
Tian
,
Y.
, and
Wei
,
Z.
,
2017
, “
Phosphorus Doped and Defects Engineered Graphene for Improved Electrochemical Sensing: Synergistic Effect of Dopants and Defects
,”
Electrochim. Acta
,
231
, pp.
557
564
.
29.
Yan
,
G.
,
Tan
,
H.
,
Wang
,
Y.
, and
Li
,
Y.
,
2019
, “
Amorphous Quaternary Alloy Phosphide Hierarchical Nanoarrays With Pagoda-Like Structure Grown on Ni Foam as pH-Universal Electrocatalyst for Hydrogen Evolution Reaction
,”
Appl. Surf. Sci.
,
489
, pp.
519
527
.
30.
Luo
,
J.
,
Wang
,
H.
,
Su
,
G.
,
Tang
,
Y.
,
Liu
,
H.
,
Tian
,
F.
, and
Li
,
D.
,
2017
, “
Self-Supported Nickel Phosphosulphide Nanosheets for Highly Efficient and Stable Overall Water Splitting
,”
J. Mater. Chem. A
,
5
(
28
), pp.
1
3
.
31.
Zhang
,
X.
,
Zhang
,
X.
,
Xu
,
H.
,
Wu
,
Z.
,
Wang
,
H.
, and
Liang
,
Y.
,
2017
, “
Iron-Doped Cobalt Monophosphide Nanosheet/Carbon Nanotube Hybrids as Active and Stable Electrocatalysts for Water Splitting
,”
Adv. Funct. Mater.
,
27
(
24
), p.
1606635
.
32.
Xu
,
W.
,
Zhu
,
S.
,
Liang
,
Y.
,
Cui
,
Z.
,
Yang
,
X.
, and
Inoue
,
A.
,
2018
, “
Nanoporous Metal Phosphide Catalyst for Bifunctional Water Splitting
,”
J. Mater. Chem. A
,
6
(
14
), pp.
5574
5579
.
33.
Zheng
,
H.
,
Huang
,
X.
,
Gao
,
H.
,
Lu
,
G.
,
Li
,
A.
,
Dong
,
W.
, and
Wang,
G.
,
2019
, “
Cobalt-Tuned Nickel Phosphide Nanoparticles for Highly Efficient Electrocatalysis
,”
Appl. Surf. Sci.
,
479
, pp.
1254
1261
.
34.
Li
,
J.
,
Li
,
S.
,
Pu
,
J.
,
Zhong
,
C.
,
Zhou
,
Q.
,
Shen
,
Z.
,
Zhang
,
H.
, and
Ma
,
H.
,
2020
, “
Electronic Modulation of Nickel Phosphide by Iron Doping and Its Assembly on a Graphene Framework for Efficient Electrocatalytic Water Oxidation
,”
J. Alloys Compd.
,
824
, p.
153913
.
35.
Luo
,
S.
,
Hei
,
P.
,
Wang
,
R.
,
Yin
,
J.
,
Hong
,
W.
,
Liu
,
S.
,
Bai
,
Z.
, and
Jiao
,
T.
,
2020
, “
Facile Synthesis of Cobalt Phosphide Nanoparticles as Highly Active Electrocatalysts for Hydrogen Evolution Reaction
,”
Colloids Surf. A-Physicochem. Eng. Aspects
,
600
, p.
12495
.
36.
Zhang
,
R.
,
Wang
,
X.
,
Yu
,
S.
,
Wen
,
T.
,
Zhu
,
X.
,
Yang
,
F.
,
Sun
,
X.
,
Wang
,
X.
, and
Hu
,
W.
,
2016
, “
Ternary NiCo2Px Nanowires as pH-Universal Electrocatalysts for Highly Efficient Hydrogen Evolution Reaction
,”
Adv. Mater.
,
29
(
9
), p.
1605502
.
37.
Tang
,
C.
,
Zhang
,
R.
,
Lu
,
W.
,
He
,
L.
,
Jiang
,
X.
,
Asiri
,
A.
, and
Sun
,
X.
,
2017
, “
Fe Doped CoP Nanoarray: A Monolithic Multifunctional Catalyst for Highly Efficient Hydrogen Generation
,”
Adv. Mater.
,
29
(
2
), p.
1602441
.
38.
Yang
,
L.
,
Qi
,
H.
,
Zhang
,
C.
, and
Sun
,
X.
,
2016
, “
An Efficient Bifunctional Electrocatalyst for Water Splitting Based on Cobalt Phosphide
,”
Nanotechnology
,
27
(
23
), p.
23LT01
.
39.
Ma
,
B.
,
Yang
,
Z.
,
Chen
,
Y.
, and
Yuan
,
Z.
,
2018
, “
Nickel Cobalt Phosphide With Three-Dimensional Nanostructure as a Highly Efficient Electrocatalyst for Hydrogen Evolution Reaction in Both Acidic and Alkaline Electrolytes
,”
Nano Res.
,
12
(
2
), pp.
375
380
.
40.
Liu
,
M.
,
Yang
,
L.
,
Liu
,
T.
,
Tang
,
Y.
,
Luo
,
S.
,
Liu
,
C.
, and
Zeng
,
Y.
,
2017
, “
Fe2P/Reduced Graphene Oxide/Fe2P Sandwich-Structured Nanowall Arrays: A High-Performance Non-Noble-Metal Electrocatalyst for Hydrogen Evolution
,”
J. Mater. Chem. A
,
5
(
18
), pp.
8608
8615
.
41.
Zhou
,
T.
,
Cao
,
Z.
,
Wang
,
H.
,
Gao
,
Z.
,
Li
,
L.
,
Ma
,
H.
, and
Zhao
,
Y.
,
2017
, “
Ultrathin Co-Fe Hydroxide Nanosheet Arrays for Improved Oxygen Evolution During Water Splitting
,”
RSC Adv.
,
7
(
37
), pp.
22818
22824
.
42.
Feng
,
J.
,
Xu
,
H.
,
Dong
,
Y.
,
Ye
,
S.
,
Tong
,
Y.
, and
Li
,
G.
,
2016
, “
FeOOH/Co/FeOOH Hybrid Nanotube Arrays as High-Performance Electrocatalysts for the Oxygen Evolution Reaction
,”
Angew. Chem. Int. Ed.
,
55
(
11
), pp.
3694
3698
.
43.
Lian
,
J.
,
Wu
,
Y.
,
Zhang
,
H.
,
Gu
,
S.
,
Zeng
,
Z.
, and
Ye
,
X.
,
2018
, “
One-Step Synthesis of Amorphous Ni-Fe-P Alloy as Bifunctional Electrocatalyst for Overall Water Splitting in Alkaline Medium
,”
Int. J. Hydrogen Energy
,
43
(
29
), pp.
12929
12938
.
44.
Wang
,
X.
,
Ma
,
Z.
,
Chai
,
L.
,
Xu
,
L.
,
Zhu
,
Z.
,
Hu
,
Y.
,
Qian
,
J.
, and
Huang
,
S.
,
2018
, “
MOF Derived N-Doped Carbon Coated CoP Particle/Carbon Nanotube Composite for Efficient Oxygen Evolution Reaction
,”
Carbon
,
141
, pp.
643
651
.
45.
Liu
,
P.
, and
Rodriguez
,
J.
,
2005
, “
Catalysts for Hydrogen Evolution From the [NiFe] Hydrogenase to the Ni-2P (001) Surface: The Importance of Ensemble Effect
,”
J. Am. Chem. Soc.
,
127
(
42
), pp.
14871
14878
.
46.
Popczun
,
E.
,
McKone
,
J.
,
Read
,
C.
,
Biacchi
,
A.
,
Wiltrout
,
A.
,
Lewis
,
N.
, and
Schaak
,
R.
,
2013
, “
Nanostructured Nickel Phosphide as an Electrocatalyst for the Hydrogen Evolution Reaction
,”
J. Am. Chem. Soc.
,
135
(
25
), pp.
9267
9270
.
You do not currently have access to this content.