Abstract

Due to the low specific capacitance and small specific surface area of conventional carbon materials used as electrode materials for double-layer capacitors, the search for more ideal materials and ingenious preparation methods remains a major challenge. In this study, fractional porous carbon nanosheets were prepared by co-doping Fe and N with chitosan as nitrogen source. The advantage of this method is that the carbon nanosheets can have a large number of pore structures and produce a large specific surface area. The presence of Fe catalyzes the graphitization of carbon in the carbon layer during carbonization process and further increases the specific surface area of the electrode material. This structure provides an efficient ion and electron transport pathway, which enables more active sites to participate in the REDOX reaction, thus significantly enhancing the electrochemical performance of SCs. The specific surface area of CS-800 is up to 1587 m2 g−1. When the current density is 1 A g−1, the specific capacitance of CS-800 reaches 319.5 F g−1 and remains 84.61% of the initial value after 10,000 cycles. The Coulomb efficiency of CS-800 is almost 100% after a long cycle, which indicates that CS-800 has more ideal double-layer capacitance and pseudo capacitance.

References

1.
Guo
,
X. F.
,
Chai
,
B.
,
Wang
,
H. B.
,
Xiang
,
Q.
,
Wang
,
L. Y.
,
Luo
,
Y. Y.
, and
Hao
,
C. W.
,
2019
, “
Preparation and Characterization of Polyaniline/Chitosan Supercapacitor Electrode Composite
,”
Appl. Chem. Eng.
,
48
(
10
), pp.
2403
2411
.
2.
Wang
,
D.
,
Xuan
,
L. H.
,
Li
,
C.
, and
Han
,
G. P.
,
2018
, “
Preparation and Characterization of Electrospun Cellulose Nanocrystals/Chitosan-Polyvinyl Alcohol Composite Nanofibers
,”
Acta Mater. Compositae Sin.
,
35
(
4
), pp.
238
246
.
3.
Ji
,
Q. Q.
,
Guo
,
P. Z.
, and
Zhao
,
X. S.
,
2010
, “
Preparation of Porous Carbon From Chitosan and its Application in Electrochemical Supercapacitor
,”
Acta Phys.-Chim. Sin.
,
26
(
5
), pp.
1254
1258
.
4.
Yang
,
X. M.
,
Zeng
,
X. R.
,
Han
,
G. H.
,
Sui
,
D.
,
Song
,
X. Y.
, and
Zhang
,
Y. S.
,
2020
, “
Preparation and Performance of Porous Carbon Nanocomposite From Renewable Phenolic Resin and Halloysite Nanotube
,”
Nanomaterials
,
10
(
9
), p.
1703
.
5.
Sudhakar
,
Y. N.
, and
Selvakumar
,
M.
,
2012
, “
Lithium Perchlorate Doped Plasticized Chitosan and Starch Blend as Biodegradable Polymer Electrolyte for Supercapacitors
,”
Electrochim. Acta
,
78
(
1
), pp.
398
405
.
6.
Choudhury
,
N. A.
,
Northrop
,
P. W. C.
,
Crothers
,
A. C.
,
Jain
,
S.
, and
Subramanian
,
V. R.
,
2012
, “
Chitosan Hydrogel-Based Electrode Binder and Electrolyte Membrane for EDLCs: Experimental Studies and Model Validation
,”
J. Appl. Electrochem.
,
42
(
11
), pp.
935
943
.
7.
Luanin
,
O.
,
Janoevi-Leai
,
A.
, and
Gavrilov
,
N.
,
2020
, “
Carbon Materials Obtained by Carbonization of Electrochemically Gelled Alginates and Chitosan for Supercapacitors
,”
Tehnika
,
75
(
6
), pp.
545
552
.
8.
Hou
,
X. Y.
,
2016
,
Study on N/P/Si Co-Doped Carbon Nanofiber Electrode Material for Supercapacitor
,
Beijing University of Chemical Technology
,
Beijing, China
.
9.
Chen
,
K.
,
Liu
,
J.
,
Bian
,
H.
,
Wang
,
F. J.
, and
Shao
,
Z. Q.
,
2020
, “
Dexterous and Friendly Preparation of N/P Co-Doping Hierarchical Porous Carbon Nanofibers via Electrospun Chitosan for High Performance Supercapacitors
,”
J. Electroanal. Chem.
,
878
, p.
114473
.
10.
Chen
,
L. F.
,
Lu
,
Y.
,
Yu
,
L.
, and
Lou
,
X. W.
,
2017
, “
Designed Formation of Hollow Particle-Based Nitrogen-Doped Carbon Nanofibers for High-Performance Supercapacitors
,”
Energy Environ. Sci.
,
10
(
8
), pp.
1777
1783
.
11.
Song
,
P.
,
He
,
X.
,
Shen
,
X.
,
Sun
,
Y.
,
Li
,
Z.
,
Yuan
,
A.
,
Zhai
,
L.
, and
Zhang
,
D.
,
2019
, “
Dissolution-Assistant All-in-One Synthesis of N and S Dual-Doped Porous Carbon for High-Performance Supercapacitors
,”
Adv. Powder Technol.
,
30
(
10
), pp.
2211
2217
.
12.
Sun
,
L.
,
Fu
,
Y.
,
Tian
,
C.
,
Yang
,
Y.
,
Wang
,
L.
,
Yin
,
J.
,
Ma
,
J.
,
Wang
,
R. H.
, and
Fu
,
H. G.
,
2014
, “
Isolated Boron and Nitrogen Sites on Porous Graphitic Carbon Synthesized From Nitrogen-Containing Chitosan for Supercapacitors
,”
Chemsuschem
,
7
(
6
), pp.
1637
1646
.
13.
Yao
,
J. F.
,
Ma
,
A. J.
,
Duan
,
B. T.
,
Liu
,
X. D.
,
Zou
,
A. D.
,
Wang
,
L. M.
,
He
,
W.
, and
Liu
,
D.
,
2020
, “
Preparation and Capacitive Performance of Porous Carbon Based on Chitosan
,”
Chem. Bioeng.
,
37
(
9
), pp.
17
22
.
14.
Dai
,
Y. F.
,
He
,
S. S.
,
Yu
,
L. B.
,
Liu
,
J.
,
Gan
,
L. H.
, and
Long
,
M. N.
,
2019
, “
One-step Preparation of Nitrogen-Doped Porous Carbons with Excellent Properties for High-Performance Supercapacitors
,”
Phys. Chem. Solids
,
129
(
6
), pp.
122
127
.
15.
Hao
,
P.
,
Zhao
,
Z. H.
,
Leng
,
Y. H.
,
Tian
,
J.
,
Sang
,
Y. H.
,
Boughton
,
R. I.
,
Wong
,
C. P.
,
Liu
,
H.
, and
Yang
,
B.
,
2015
, “
Graphene-based Nitrogen Self-Doped Hierarchical Porous Carbon Aerogels Derived From Chitosan for High Performance Supercapacitors
,”
Nano Energy
,
15
(
7
), pp.
9
23
.
16.
Stepniak
,
I.
,
Galinski
,
M.
,
Nowacki
,
K.
,
Wysokowski
,
M.
,
Jakubowaka
,
P.
,
Bazhenov
,
V.
,
Lwisegang
,
T.
,
Ehrlich
,
H.
, and
Jesionowski
,
T.
,
2016
, “
A Novel Chitosan/Sponge Chitin Origin Material as a Membrane for Supercapacitors—Preparation and Characterization
,”
RSC Adv.
,
6
(
5
), pp.
4007
4013
.
17.
Chen
,
K.
,
Liu
,
J.
,
Bian
,
H.
,
Wei
,
J.
,
Wang
,
W. J.
, and
Shao
,
Z. Q.
,
2020
, “
Ingenious Preparation of N/NiOx Co-Doped Hierarchical Porous Carbon Nanosheets Derived From Chitosan Nanofibers for High-Performance Supercapacitors
,”
Nanotechnology
,
31
(
33
), p.
335713
. (13pp).
18.
Zhang
,
H. J.
,
Zhang
,
X. G.
,
Yuan
,
C. Z.
,
Gao
,
B.
,
Sun
,
K.
,
Fu
,
Q. B.
,
Lu
,
X. J.
, and
Jiang
,
J. C.
,
2011
, “
Preparation of Water Solublechitosan-Based Porous Carbon/NiO Composites and Their Electrochemical Capacitive Behavior
,”
Acta Phys. Chim. Sin
,
27
(
2
), pp.
455
460
.
19.
Luo
,
M.
,
Wang
,
X.
,
Meng
,
T. T.
,
Yang
,
P.
,
Zhu
,
Z. Q.
,
Min
,
H. H.
,
Chen
,
M. Z.
,
Chen
,
W. M.
, and
Zhou
,
X. Y.
,
2020
, “
Rapid one-Step Preparation of Hierarchical Porous Carbon From Chitosan-Based Hydrogel for High-Rate Supercapacitors: The Effect of Gelling Agent Concentration
,”
Int. J. Biol. Macromol.
,
146
, pp.
453
461
.
20.
Wang
,
M.
,
Liu
,
H.
,
Zhai
,
D. D.
,
Chen
,
X. Y.
, and
Zhang
,
Z. J.
,
2019
, “
Insitu Synthesis of Highly Nitrogen, Sulfur Co-Doped Carbon Nanosheets From Melamine-Formaldehyde-Thiourea Resin With Improved Cycling Stability and Energy Density for Supercapacitors
,”
J. Power Sources
,
416
, pp.
79
88
.
21.
Yang
,
L.
,
Wu
,
T. T.
,
Li
,
H. Q.
,
Jin
,
B.
, and
He
,
X. J.
,
2021
, “
Preparation of Nitrogen-Doped Carbon Nanonets for High Performance Supercapacitors
,”
Chin. J. Inorg. Chem.
,
37
(
6
), pp.
1017
1026
.
22.
Lin
,
S. Y.
,
Mo
,
L.
,
Wang
,
F. J.
, and
Shao
,
Z. Q.
,
2021
, “
N/O co-Doped Hierarchically Porous Carbon With Three-Dimensional Conductive Network for High-Performance Supercapacitors
,”
J. Alloys Compd.
,
873
, pp.
159705
.
23.
Xiong
,
W.
,
2017
, “
Synthesis of a Highly Porous Nitrogen-Doped Carbon Material From a Melamine/Formaldehyde Resin with Potassium Citrate
,”
Int. J. Electrochem. Sci.
,
12
, pp.
8973
8981
.
24.
Fu
,
F. B.
,
Yang
,
D. J.
,
Zhang
,
W. L.
,
Wang
,
H.
, and
Qiu
,
X. Q.
,
2020
, “
Green Self-Assembly Synthesis of Porous Lignin-Derived Carbon Quasi-Nanosheets for High-Performance Supercapacitors
,”
Chem. Eng. J.
,
392
, p.
123721
.
25.
Zhang
,
X. L.
,
Feng
,
C. N.
,
Li
,
H. P.
, and
Zheng
,
X. C.
,
2020
, “
N, O Self-Codoped Hierarchical Porous Carbon From Chitosan for Supercapacitor Electrode Active Materials
,”
Cellulose
,
28
(
2
), pp.
1
15
.
26.
Guo
,
S.
,
Zhang
,
Q.
,
Zhu
,
Z.
,
Xie
,
J. W.
,
Fan
,
J. C.
,
Xu
,
Q. J.
,
Shi
,
P. H.
, and
Min
,
Y. L.
,
2017
, “
Facile Synthesis of Molybdenum Disulfide Nanosheets/Nitrogen-Doped Porous Carbon Composites for High-Performance Anode Material in Lithium-Ion Batteries
,”
ChemistrySelect
,
2
(
10
), pp.
3117
3128
.
27.
Xu
,
L.
,
Li
,
X.
, and
Li
,
X.
,
2020
, “
Large-sized and Ultrathin Biomass-Derived Hierarchically Porous Carbon Nanosheets Prepared by a Facile Way for High-Performance Supercapacitors
,”
Appl. Surf. Sci.
,
526
, p.
146770
.
28.
Sun
,
G. L.
,
Li
,
B.
,
Ran
,
J. B.
,
Shen
,
X. Y.
, and
Tong
,
H.
,
2015
, “
Three-dimensional Hierarchical Porous Carbon/Graphene Composites Derived From Graphene Oxide-Chitosan Hydrogels for High Performance Supercapacitors
,”
Electrochim. Acta
,
171
, pp.
13
22
.
29.
Zhang
,
Y.
,
Zhu
,
J. Y.
,
Ren
,
H. B.
,
Bi
,
Y. T.
, and
Zhang
,
L.
,
2017
, “
Facile Synthesis of Nitrogen-Doped Graphene Aerogels Functionalized With Chitosan for Supercapacitors with Excellent Electrochemical Performance
,”
Chin. Chem. Lett.
,
28
(
5
), pp.
935
942
.
30.
Han
,
J. L.
,
Shi
,
L. Y.
,
Yan
,
T. T.
,
Zhang
,
J. P.
, and
Zhang
,
D. S.
,
2018
, “
Removal of Ions From Saline Water Using N, P co-Doped 3D Hierarchical Carbon Architectures via Capacitive Deionization
,”
Environ. Sci.: Nano
,
5
(
10
), pp.
2337
2345
.
31.
Sharm
,
K.
,
Mayes
,
R. T.
,
Kiggans
,
J. O.
, Jr
.,
Yiacoumi
,
S.
,
Gabitto
,
J.
,
DePaoli
,
D. W.
,
Dai
,
S.
, and
Tsouris
,
C.
,
2013
, “
Influence of Temperature on the Electrosorption of Ions From Aqueous Solutions Using Mesoporous Carbon Materials—ScienceDirect
,”
Sep. Purif. Technol.
,
116
(
37
), pp.
206
213
.
32.
Wang
,
M. X.
,
Zhang
,
J.
,
Yi
,
X. B.
,
Zhao
,
X. F.
,
Liu
,
B. X.
, and
Liu
,
X. C.
,
2019
, “
Nitrogen-doped Hierarchical Porous Carbon Derived From ZIF-8 Supported on Carbon Aerogels with Advanced Performance for Supercapacitor
,”
Appl. Surf. Sci.
,
507
, p.
145166
.
33.
Yin
,
H. J.
,
Zhao
,
S. L.
,
Wan
,
J. W.
,
Tang
,
H. J.
,
Chang
,
L.
,
He
,
L. C.
,
Zhao
,
H. J.
,
Gao
,
Y.
, and
Tang
,
Z. Y.
,
2013
, “
Three-Dimensional Graphene/Metal Oxide Nanoparticle Hybrids for High-Performance Capacitive Deionization of Saline Water
,”
Adv. Mater.
,
25
(
43
), pp.
6270
6276
.
34.
Gao
,
W. B.
,
Li
,
Q.
,
Dou
,
M.
,
Zhang
,
Z. P.
, and
Wang
,
F.
,
2018
, “
Self-supported Ni Nanoparticles Embedded on Nitrogen-Doped Carbon Derived From Nickel Polyphthalocyanine for High-Performance non-Enzymatic Glucose Detection
,”
J. Mater. Chem. B
,
6
(
42
), pp.
6781
6787
.
35.
Li
,
K.
,
Jie
,
S. S.
,
Yuan
,
L.
,
Lin
,
X.
, and
Liu
,
Z. G.
,
2018
, “
. The Synthesis of N, S-Codoped Ordered Mesoporous Carbon as an Efficient Metal-Free Catalyst for Selective Oxidation of Arylalkanes
,”
Catal. Commun.
,
112
, pp.
39
42
.
36.
Peng
,
L.
,
Liang
,
Y. R.
,
Dong
,
H. W.
,
Hu
,
H.
,
Zhao
,
X.
,
Cai
,
Y. J.
,
Xiao
,
Y.
,
Liu
,
Y. L.
, and
Zheng
,
M. T.
,
2018
, “
Super-hierarchical Porous Carbons Derived From Mixed Biomass Wastes by a Stepwise Removal Strategy for High-Performance Supercapacitors
,”
J. Power Sources
,
377
, pp.
151
160
.
37.
Mary
,
A. J. C.
,
Nandhini
,
C.
, and
Bose
,
A. C.
,
2019
, “
Hierarchical Porous Structured N-Doped Activated Carbon Derived From Helianthus Annuus Seed as a Cathode Material for Hybrid Supercapacitor Device
,”
Mater. Lett.
,
256
, p.
126617
.
38.
Abdelhamid
,
H. N.
, and
Wu
,
H. F.
,
2013
, “
Multifunctional Graphene Magnetic Nanosheet Decorated With Chitosan for Highly Sensitive Detection of Pathogenic Bacteria
,”
Mater. Chem. B
,
1
(
32
), pp.
3950
3961
.
39.
Sliwak
,
A.
,
Diez
,
N.
,
Miniach
,
E.
, and
Gryglewicz
,
G.
,
2016
, “
Nitrogen-containing Chitosan-Based Carbon as an Electrode Material for High-Performance Supercapacitors
,”
Appl. Electrochem.
,
46
(
6
), pp.
667
677
.
40.
Qian
,
L.
, and
Zhang
,
H. F.
,
2010
, “
Green Synthesis of Chitosan-Based Nanofibers and Their Applications
,”
Green Chem.
,
12
(
7
), pp.
1207
1214
.
41.
Qian
,
L. L.
,
Fan
,
Y. X.
,
Song
,
H. H.
,
Zhou
,
X. X.
, and
Xiong
,
Y. B.
,
2019
, “
Poly (Ionic Liquid)/Carboxymethyl Chitosan Complex-Derived Nitrogen and Sulfur Codoped Porous Carbon for High Performance Supercapacitors
,”
Ionics
,
25
(
10
), pp.
4915
4924
.
42.
Cheng
,
J.
,
Xu
,
Q. Q.
,
Wang
,
X.
,
Li
,
Z. Q.
,
Wu
,
F. Z.
,
Shao
,
J. J.
, and
Xie
,
H. B.
,
2019
, “
Ultrahigh-Surface-Area Nitrogen-Doped Hierarchically Porous Carbon Materials Derived From Chitosan and Betaine Hydrochloride Sustainable Precursors for High-Performance Supercapacitors
,”
Sustainable Energy Fuels
,
3
(
5
), pp.
1215
1224
.
43.
Wu
,
Q.
,
Gao
,
M. M.
,
Cao
,
S. S.
,
Hu
,
J. Q.
,
Huang
,
L.
,
Yu
,
S. T.
, and
Ragauskas
,
A. J.
,
2019
, “
Chitosan-Based Layered Carbon Materials Prepared via Ionic-Liquid-Assisted Hydrothermal Carbonization and Their Performance Study
,”
Taiwan Inst. Chem. Eng.
,
101
(
8
), pp.
231
243
.
44.
Wu
,
D. L.
,
Wang
,
T.
,
Wang
,
L. X.
, and
Jia
,
D. Z.
,
2019
, “
Hydrothermal Synthesis of Nitrogen, Sulfur Co-Doped Graphene and Its High Performance in Supercapacitor and Oxygen Reduction Reaction
,”
Microporous Mesoporous Mater.
,
290
(
12
), p.
109556
.
45.
Wang
,
Y. H.
,
Liu
,
R. N.
,
Tian
,
Y. D.
,
Sun
,
Z.
,
Huang
,
Z. H.
,
Wu
,
X. L.
, and
Li
,
B.
,
2020
, “
Heteroatoms-doped Hierarchical Porous Carbon Derived From Chitin for Flexible All-Solid-State Symmetric Supercapacitors
,”
Chem. Eng.
,
384
, p.
123263
.
46.
Yang
,
H. Z.
,
Liu
,
Y.
,
Kong
,
L. B.
,
Kang
,
L.
, and
Ran
,
F.
,
2019
, “
Biopolymer Based Carboxylated Chitosan Hygrogel Film Crosslinked by HCl as Gel Polymer Electrolyte for All-Solid State Supercapacitors
,”
Power Sources
,
426
, pp.
47
54
.
47.
Ma
,
Y.
,
Wu
,
D. L.
,
Wang
,
T.
, and
Jia
,
D.
,
2020
, “
Nitrogen, Phosphorus Co-Doped Carbon Obtained From Amino Acid Based Resin Xerogel as Efficient Electrode for Supercapacitor
,”
ACS Appl. Energy Mater.
,
3
(
1
), pp.
957
969
.
48.
Zhang
,
K.
,
Zhang
,
L. L.
,
Zhao
,
X. S.
, and
Wu
,
J. S.
,
2010
, “
Graphene/Polyaniline Nanofiber Composites as Supercapacitor Electrodes
,”
Chem. Mater.
,
22
(
4
), pp.
1392
1401
.
49.
Kim
,
C.
, and
Yang
,
K. S.
,
2003
, “
Electrochemical Properties of Carbon Nanofiber Web as an Electrode for Supercapacitor Prepared by Electrospinning
,”
Appl. Phys. Lett.
,
83
(
6
), pp.
1216
1218
.
You do not currently have access to this content.