Abstract

Low-cost Fe-based electrode materials for Li-ion energy storage devices attract lots of attention. In this work, porous Fe2O3 nanoparticles are synthesized by a simple route. First, their lithium storage performance is investigated by assembling half-cell configurations with Li foil as the counter electrode. During initial dozens of cycles, capacities of Fe2O3 nanoparticles fall off rapidly, which is related to continuous growth of solid electrolyte interphase (SEI). Amazingly, the capacities show an upturn in extended cycles. The pseudocapacitance of activated capacities is revealed by executing cyclic voltammetry (CV) tests at various scan rates on 500-cycled Fe2O3 electrodes. Based on electrochemical results, we speculate this special cycling performance of Fe2O3 nanoparticles may be associated with reversible electrochemical processes of SEI under the catalysis of nano-size Fe. Further, 500-cycled Fe2O3 anodes are reassembled with activated carbon cathodes for Li-ion capacitors (LICs). The LICs show energy densities of 110 Wh kg−1 at power densities of 136 W kg−1, and 72.8% capacity retention after 3000 cycles at 2 A g−1. We report an interesting electrochemical behavior of porous Fe2O3 nanoparticles, and a high-performance LIC based on activated Fe2O3 as an anode. This work may offer a new understanding for lithium storage capacities of metal oxide anodes.

References

1.
Nam
,
Y. J.
,
Oh
,
D. Y.
,
Jung
,
S. H.
, and
Jung
,
Y. S.
,
2017
, “
Toward Practical all-Solid-State Lithium-Ion Batteries With High Energy Density and Safety: Comparative Study for Electrodes Fabricated by Dry- and Slurry-Mixing Processes
,”
J. Power Sources
,
375
, pp.
93
101
.
2.
Tie
,
D.
,
Huang
,
S.
,
Wang
,
J.
,
Ma
,
J.
,
Zhang
,
J.
, and
Zhao
,
Y.
,
2019
, “
Hybrid Energy Storage Devices: Advanced Electrode Materials and Matching Principles
,”
Energy Storage Mater.
,
19
, pp.
22
40
.
3.
Chen
,
S.
,
Qiu
,
L.
, and
Cheng
,
H.-M.
,
2020
, “
Carbon-Based Fibers for Advanced Electrochemical Energy Storage Devices
,”
Chem. Rev.
,
120
(
5
), pp.
2811
2878
.
4.
Cai
,
P.
,
Zou
,
K.
,
Zou
,
G.
,
Hou
,
H.
, and
Ji
,
X.
,
2020
, “
Quinone/Ester-Based Oxygen Functional Group-Incorporated Full Carbon Li-Ion Capacitor for Enhanced Performance
,”
Nanoscale
,
12
(
6
), pp.
3677
3685
.
5.
Liu
,
C.-F.
,
Liu
,
Y.-C.
,
Yi
,
T.-Y.
, and
Hu
,
C.-C.
,
2019
, “
Carbon Materials for High-Voltage Supercapacitors
,”
Carbon
,
145
, pp.
529
548
.
6.
Lin
,
Y.-T.
,
Chang-Jian
,
C.-W.
,
Hsieh
,
T.-H.
,
Huang
,
J.-H.
,
Weng
,
H. C.
,
Hsiao
,
Y.-S.
,
Syu
,
W.-L.
, and
Chen
,
C.-P.
,
2021
, “
High-Performance Li-Ion Capacitor Constructed From Biomass-Derived Porous Carbon and High-Rate Li4Ti5O12
,”
Appl. Surf. Sci.
,
543
, p.
148717
.
7.
Jeong
,
J. H.
,
Lee
,
G.-W.
,
Kim
,
Y. H.
,
Choi
,
Y. J.
,
Roh
,
K. C.
, and
Kim
,
K.-B.
,
2019
, “
A Holey Graphene-Based Hybrid Supercapacitor
,”
Chem. Eng. J.
,
378
, p.
122126
.
8.
Ju
,
J.
,
Zhang
,
L.
,
Shi
,
H.
,
Li
,
Z.
,
Kang
,
W.
, and
Cheng
,
B.
,
2019
, “
Three-dimensional Porous Carbon Nanofiber Loading MoS2 Nanoflake-Flowerballs as a High-Performance Anode Material for Li-Ion Capacitor
,”
Appl. Surf. Sci.
,
484
, pp.
392
402
.
9.
Dubal
,
D. P.
,
Jayaramulu
,
K.
,
Sunil
,
J.
,
Kment
,
S.
,
Gomez-Romero
,
P.
,
Narayana
,
C. S.
,
Zboril
,
R.
, and
Fischer
,
R. A.
,
2019
, “
Metal-Organic Framework (MOF) Derived Electrodes With Robust and Fast Lithium Storage for Li-ion Hybrid Capacitors
,”
Adv. Funct. Mater.
,
29
(
19
), p.
1900532
.
10.
Liu
,
H.
,
Liu
,
X.
,
Wang
,
S.
,
Liu
,
H.-K.
, and
Li
,
L.
,
2020
, “
Transition Metal Based Battery-Type Electrodes in Hybrid Supercapacitors: A Review
,”
Energy Storage Mater.
,
28
, pp.
122
145
.
11.
Liao
,
J.
,
Ni
,
W.
,
Wang
,
C.
, and
Ma
,
J.
,
2020
, “
Layer-structured Niobium Oxides and Their Analogues for Advanced Hybrid Capacitors
,”
Chem. Eng. J.
,
391
, p.
123489
.
12.
Goriparti
,
S.
,
Miele
,
E.
,
De Angelis
,
F.
,
Di Fabrizio
,
E.
,
Proietti Zaccaria
,
P.
, and
Capiglia
,
C.
,
2014
, “
Review on Recent Progress of Nanostructured Anode Materials for Li-Ion Batteries
,”
J. Power Sources
,
257
, pp.
421
443
.
13.
Li
,
Q.
,
Li
,
H.
,
Xia
,
Q.
,
Hu
,
Z.
,
Zhu
,
Y.
,
Yan
,
S.
,
Ge
,
C.
,
Zhang
,
Q.
,
Wang
,
X.
,
Shang
,
X.
,
Fan
,
S.
,
Long
,
Y.
,
Gu
,
L.
,
Miao
,
G.-X.
,
Yu
,
G.
, and
Moodera
,
J. S.
,
2021
, “
Extra Storage Capacity in Transition Metal Oxide Lithium-Ion Batteries Revealed by in Situ Magnetometry
,”
Nat. Mater.
,
20
(
1
), pp.
76
83
.
14.
Zhang
,
X.
,
Li
,
S.
,
El-Khodary
,
S. A.
,
Zou
,
B.
,
Yang
,
S.
,
Ng
,
D. H. L.
,
Liu
,
X.
,
Lian
,
J.
, and
Li
,
H.
,
2020
, “
Porous α-Fe2O3 Nanoparticles Encapsulated Within Reduced Graphene Oxide as Superior Anode for Lithium-ion Battery
,”
Nanotechnology
,
31
(
14
), p.
145404
.
15.
Wu
,
H.
,
Zhang
,
Z.
,
Qin
,
M.
,
Wang
,
Q.
,
Cao
,
Z.
,
Yu
,
Y.
,
Jia
,
B.
, and
Qu
,
X.
,
2020
, “
Solution Combustion Synthesis of Crystalline V2O3 and Amorphous V2O3/C as Anode for Lithium-ion Battery
,”
J. Am. Ceram. Soc.
,
103
(
4
), pp.
2643
2652
.
16.
Brijesh
,
K.
, and
Nagaraja
,
H. S.
,
2020
, “
ZnWO4/rGO Nanocomposite as High Capacity Anode for Lithium-Ion Battery
,”
Ionics
,
26
(
6
), pp.
2813
2823
.
17.
Quan
,
H.
,
Zeng
,
W.
,
Pan
,
M.
,
Xu
,
Y.
,
Chen
,
D.
, and
Liang
,
J.
,
2021
, “
Controlled Synthesis of α-Fe2O3@rGO Core–Shell Nanocomposites as Anode for Lithium ion Batteries
,”
J. Mater. Sci.
,
56
(
1
), pp.
664
676
.
18.
Luchkin
,
S. Y.
,
Lipovskikh
,
S. A.
,
Katorova
,
N. S.
,
Savina
,
A. A.
,
Abakumov
,
A. M.
, and
Stevenson
,
K. J.
,
2020
, “
Solid-electrolyte Interphase Nucleation and Growth on Carbonaceous Negative Electrodes for Li-ion Batteries Visualized with in Situ Atomic Force Microscopy
,”
Sci. Rep.
,
10
(
1
), p.
8550
.
19.
Liu
,
W.
,
Liu
,
P.
, and
Mitlin
,
D.
,
2020
, “
Review of Emerging Concepts in SEI Analysis and Artificial SEI Membranes for Lithium, Sodium, and Potassium Metal Battery Anodes
,”
Adv. Energy Mater.
,
10
(
43
), p.
2002297
.
20.
Qu
,
Y.
,
Zhang
,
D.
,
Wang
,
X.
,
Qiu
,
H.-L.
,
Zhang
,
T.
,
Zhang
,
M.
,
Tian
,
G.
,
Yue
,
H.-J.
,
Feng
,
S.-H.
, and
Chen
,
G.
,
2017
, “
Porous ZnFe2O4 Nanospheres as Anode Materials for Li-Ion Battery With High Performance
,”
J. Alloys Compd.
,
721
, pp.
697
704
.
21.
Fu
,
F.
,
Li
,
J.-D.
,
Yao
,
Y.-Z.
,
Qin
,
X.-P.
,
Dou
,
Y.-B.
,
Wang
,
H.-Y.
,
Tsui
,
J.
,
Chan
,
K.-Y.
, and
Shao
,
M.-H.
,
2017
, “
Hierarchical NiCo2O4 Micro- and Nanostructures With Tunable Morphologies as Anode Materials for Lithium- and Sodium-Ion Batteries
,”
ACS Appl. Mater. Interfaces
,
9
(
19
), pp.
16194
16201
.
22.
Li
,
Y.-H.
,
Li
,
J.-H.
,
Xu
,
Z.-F.
,
Liu
,
J.-M.
,
Liu
,
S.-J.
, and
Wang
,
R.-X.
,
2021
, “
Metal-Organic Framework Derived Porous Nanostructured Co3O4 as High-Performance Anode Materials for Lithium-Ion Batteries
,”
J. Mater. Sci.
,
56
(
3
), pp.
2451
2463
.
23.
Wu
,
S.
,
Wei
,
Y.
,
Chen
,
H.
,
Wei
,
K.
,
Li
,
Z.
,
He
,
J.
,
Deng
,
L.
,
Yao
,
L.
, and
Yang
,
H.
,
2021
, “
In-situ Encapsulation of α-Fe2O3 Nanoparticles Into ZnFe2O4 Micro-Sized Capsules as High-Performance Lithium-Ion Battery Anodes
,”
J. Mater. Sci. Technol.
,
75
, pp.
110
117
.
24.
Zhao
,
L.
,
Chen
,
S.
,
Zhao
,
Y.
,
Kuang
,
Q.
,
Fan
,
Q.
, and
Dong
,
Y.
,
2020
, “
Binary Metal Oxide Anode Material, VOMoO4/C, with a High Capacity and Ultralong Cycle-Life for Lithium Ion Batteries and its Multi-Electron Reaction Mechanism
,”
Solid State Ionics
,
348
, p.
115280
.
25.
Wang
,
M. F.
,
Deng
,
K. R.
,
Lu
,
W.
,
Deng
,
X. R.
,
Li
,
K.
,
Shi
,
Y. S.
,
Ding
,
B. B.
,
Cheng
,
Z. Y.
,
Xing
,
B. G.
,
Han
,
G.
,
Hou
,
Z. Y.
, and
Lin
,
J.
,
2018
, “
Rational Design of Multifunctional Fe@γ-Fe2O3@HTiO2 Nanocomposites with Enhanced Magnetic and Photoconversion Effects for Wide Applications: From Photocatalysis to Imaging-Guided Photothermal Cancer Therapy
,”
Adv. Mater.
,
30
(
13
), p.
1706747
.
26.
Rui
,
Q.
,
Wang
,
L.
,
Zhang
,
Y. J.
,
Feng
,
C. C.
,
Zhang
,
B. B.
,
Fu
,
S. R.
,
Guo
,
H. L.
,
Hu
,
H. Y.
, and
Bi
,
Y. P.
,
2018
, “
Synergistic Effects of P-Doping and a MnO2 Cocatalyst on Fe2O3 Nanorod Photoanodes for Efficient Solar Water Splitting
,”
J. Mater. Chem. A
,
6
(
16
), pp.
7021
7026
.
27.
Geng
,
W. C.
,
Ge
,
S. B.
,
He
,
X. W.
,
Zhang
,
S.
,
Gu
,
J. W.
,
Lai
,
X. Y.
,
Wang
,
H.
, and
Zhang
,
Q. Y.
,
2018
, “
Volatile Organic Compound Gas-Sensing Properties of Bimodal Porous α-Fe2O3 With Ultrahigh Sensitivity and Fast Response
,”
ACS Appl. Mater. Interfaces
,
10
(
16
), pp.
13702
13711
.
28.
Kim
,
W. Y.
,
Lee
,
J. S.
, and
Jang
,
J.
,
2018
, “
Facile Synthesis of Size-Controlled Fe2O3 Nanoparticle-Decorated Carbon Nanotubes for Highly Sensitive H2S Detection
,”
RSC Adv.
,
8
(
56
), pp.
31874
31880
.
29.
Ma
,
J.
,
Guo
,
X.
,
Yan
,
Y.
,
Xue
,
H.
, and
Pang
,
H.
,
2018
, “
FeOx-based Materials for Electrochemical Energy Storage
,”
Adv. Sci.
,
5
, p.
201700986
.
30.
Wang
,
L. L.
,
Lou
,
Z.
,
Deng
,
J. N.
,
Zhang
,
R.
, and
Zhang
,
T.
,
2015
, “
Ethanol gas Detection Using a Yolk-Shell (Core-Shell) α-Fe2O3 Nanospheres as Sensing Material
,”
ACS Appl. Mater. Interfaces
,
7
(
23
), pp.
13098
13104
.
31.
Zhang
,
L. L.
,
Bao
,
Z. W.
,
Yu
,
X. X.
,
Dai
,
P.
,
Zhu
,
J.
,
Wu
,
M. Z.
,
Li
,
G.
,
Liu
,
X. S.
,
Sun
,
Z. Q.
, and
Chen
,
C. L.
,
2016
, “
Rational Design of α-Fe2O3/Reduced Graphene Oxide Composites: Rapid Detection and Effective Removal of Organic Pollutants
,”
ACS Appl. Mater. Interfaces
,
8
(
10
), pp.
6431
6438
.
32.
Xue
,
Y.
, and
Wang
,
Y.
,
2020
, “
A Review of α-Fe2O3 (Hematite) Nanotube Structure: Recent Advances in Synthesis, Characterization, and Applications
,”
Nanoscale
,
12
(
20
), pp.
10912
10932
.
33.
Ganguly
,
D.
,
Ajay Piriya
,
V. S.
,
Ghosh
,
A.
, and
Ramaprabhu
,
S.
,
2020
, “
Magnetic Feld Assisted High Capacity Durable Li-ion Battery Using Magnetic α-Fe2O3 Nanoparticles Decorated Expired Drug Derived N-Doped Carbon Anode
,”
Sci. Rep.
,
10
(
1
), p.
9945
.
34.
Guo
,
Y.
,
Zhang
,
D.
,
Yang
,
Y.
,
Wang
,
Y.
,
Bai
,
Z.
,
Chu
,
P. K.
, and
Luo
,
Y.
,
2021
, “
MXene-Encapsulated Hollow Fe3O4 Nanochains Embedded in N-Doped Carbon Nanofibers With Dual Electronic Pathways as Flexible Anodes for High-Performance Li-Ion Batteries
,”
Nanoscale
,
13
(
8
), pp.
4624
4366
.
35.
Sarkar
,
A.
,
Shrotriya
,
P.
,
Chandra
,
A.
, and
Hu
,
C.
,
2019
, “
Chemo-Economicanalysis of Battery Aging and Capacity Fade in Lithium-Ion Battery
,”
J. Energy Storage
,
25
, p.
100911
.
36.
Laruelle
,
S.
,
Grugeon
,
S.
,
Poizot
,
P.
,
Dollé
,
M.
,
Dupont
,
L.
, and
Tarasconz
,
J. M.
,
2002
, “
On the Origin of the Extra Electrochemical Capacity Displayed by MO/Li Cells at Low Potential
,”
J. Electrochem. Soc.
,
149
(
5
), pp.
A627
A634
.
37.
Fan
,
J.-J.
,
Dai
,
P.
,
Shi
,
C.-G.
,
Wen
,
Y.
,
Luo
,
C.-X.
,
Yang
,
J.
,
Song
,
C.
,
Huang
,
L.
, and
Sun
,
S.-G.
,
2021
, “
Synergistic Dual-Additive Electrolyte for Interphase Modification to Boost Cyclability of Layered Cathode for Sodium Ion Batteries
,”
Adv. Funct. Mater.
,
31
(
17
), p.
2010500
.
38.
Sun
,
F.
,
Wang
,
H.
,
Qu
,
Z.
,
Wang
,
K.
,
Wang
,
L.
,
Gao
,
J.
,
Liu
,
S.
, and
Lu
,
Y.
,
2021
, “
Carboxyl-Dominant Oxygen Rich Carbon for Improved Sodium ion Storage: Synergistic Enhancement of Adsorption and Intercalation Mechanisms
,”
Adv. Energy Mater.
,
11
(
1
), p.
2002981
.
39.
Ding
,
Z. J.
,
Qin
,
X. Y.
,
You
,
C. H.
,
Wu
,
M. Y.
,
He
,
Y. B.
,
Kang
,
F. Y.
, and
Li
,
B. H.
,
2018
, “
Different Solid Electrolyte Interface and Anode Performance of CoCO3 Microspheres Due to Graphene Modification and LiCoO2CoCO3@rGO Full Cell Study
,”
Electrochim. Acta
,
270
, pp.
192
204
.
40.
Dollé
,
M.
,
Grugeon
,
S.
,
Beaudoin
,
B.
,
Dupont
,
L.
, and
Tarascon
,
J.-M.
,
2001
, “
In Situ TEM Study of the Interface Carbon/Electrolyte
,”
J. Power Sources
,
97–98
, pp.
104
106
.
41.
Huang
,
R.
,
Li
,
Y.
,
Liu
,
W.
,
Song
,
Y.
, and
Wang
,
L.
,
2020
, “
N-doped Honeycomb-Like Carbon Networks Loaded With Ultra-Fine Fe2O3 Nanoparticles for Lithium-ion Batteries
,”
Ceram. Int.
,
46
(
11
), pp.
17478
17485
.
42.
Wang
,
L.
,
Zhang
,
Y. M.
,
Guo
,
H. Y.
,
Li
,
J.
,
Stach
,
E. A.
,
Tong
,
X.
,
Takeuchi
,
E. S.
,
Takeuchi
,
K. J.
,
Liu
,
P.
,
Marschilok
,
A. C.
, and
Wong
,
S. S.
,
2018
, “
Structural and Electrochemical Characteristics of Ca-Doped “Flower-Like” Li4Ti5O12 Motifs as High-Rate Anode Materials for Lithium-Ion Batteries
,”
Chem. Mater.
,
30
(
3
), pp.
671
684
.
43.
Zheng
,
Z.
,
Li
,
P.
,
Huang
,
J.
,
Liu
,
H.
,
Zao
,
Y.
,
Hu
,
Z.
,
Zhang
,
L.
,
Chen
,
H.
,
Wang
,
M.-S.
,
Peng
,
D.-L.
, and
Zhang
,
Q.
,
2020
, “
High Performance Columnar-Like Fe2O3@Carbon Composite Anode via Yolk@Shell Structural Design
,”
J. Energy Chem.
,
41
, pp.
126
134
.
You do not currently have access to this content.