Abstract

To meet voltage and capability needs, batteries are grouped into packs as power sources. Abnormal ones in a pack will lead to partial heating and reduced available life, so removing anomalies out during manufacturing is of great significance. The conventional methods to detect abnormal batteries mainly rely on grading systems and manual operations. Current data-driven methods use statistical, machine learning and neural network approaches, building models, then applying them on the unlabeled. However, both cannot make full use of multiple source data and expert knowledge. Therefore, how to use these multi-source data and knowledge to improve the effect of battery anomaly detection process has become a research focus. We put forward a data-driven multi-source data feature fusion and expert knowledge integration (FFEKI) network architecture that follows encoder-decoder structure with multiple integration units and a corresponding joint loss function. First, we collect multi-source data and obtain fusion features. Then, we refine filters from expert knowledge and transform them into neural network layers as components of integration units. By this way, supervisory knowledge is integrated into our network. We evaluate our scheme by sets of experiments comparing with most widely used approaches on real manufacturing data. Results show that FFEKI obtains a maximum 100% anomaly detection rate (ADR). Meanwhile, when the number of detection T is greater than the actual number of anomalies in the testing set, our method can achieve full ADR faster. It is concluded that the proposed FFEKI achieves effective performance on power lithium-ion battery anomaly detection.

References

1.
Oliveira
,
L.
,
Messagie
,
M.
,
Rangaraju
,
S.
,
Sanfelix
,
J.
,
Rivas
,
M. H.
, and
Van Mierlo
,
J.
,
2015
, “
Key Issues of Lithium-Ion Batteries-From Resource Depletion to Environmental Performance Indicators
,”
J. Cleaner. Prod.
,
108
, pp.
354
362
.
2.
Yoshio
,
M.
,
Brodd
,
R. J.
, and
Kozawa
,
A.
,
2009
,
Lithium-Ion Batteries
, Vol.
1
,
Springer
,
New York
.
3.
Van Schalkwijk
,
W.
, and
Scrosati
,
B.
,
2002
,
Advances in Lithium Ion Batteries Introduction
,
Springer
,
Boston, MA
, pp.
1
5
.
4.
Barreras
,
J.
,
Fleischer
,
C.
,
Christensen
,
A.
,
Swierczynski
,
M.
,
Schaltz
,
E.
,
Andreasen
,
S.
, and
Sauer
,
D.
,
2016
, “
An Advanced Hil Simulation Battery Model for Battery Management System Testing
,”
IEEE. Trans. Ind. Appl.
,
52
(
6
), pp.
5086
5099
.
5.
Chiu
,
K. C.
,
Lin
,
C. H.
,
Yeh
,
S. F.
,
Lin
,
Y. H.
,
Huang
,
C. S.
, and
Chen
,
K. C.
,
2014
, “
Cycle Life Analysis of Series Connected Lithium-Ion Batteries With Temperature Difference
,”
J. Power. Sources.
,
263
, pp.
75
84
.
6.
Niu
,
X.
,
Garg
,
A.
,
Goyal
,
A.
,
Simeone
,
A.
,
Bao
,
N.
,
Zhang
,
J.
, and
Peng
,
X.
,
2019
, “
A Coupled Electrochemical-Mechanical Performance Evaluation for Safety Design of Lithium-ion Batteries in Electric Vehicles: An Integrated Cell and System Level Approach
,”
J. Cleaner. Prod.
,
222
, pp.
633
645
.
7.
Vetter
,
J.
,
Novák
,
P.
,
Wagner
,
M. R.
,
Veit
,
C.
,
Möller
,
K.-C.
,
Besenhard
,
J.
,
Winter
,
M.
,
Wohlfahrt-Mehrens
,
M.
,
Vogler
,
C.
, and
Hammouche
,
A.
,
2005
, “
Ageing Mechanisms in Lithium-Ion Batteries
,”
J. Power. Sources.
,
147
(
1–2
), pp.
269
281
.
8.
Cadini
,
F.
,
Sbarufatti
,
C.
,
Cancelliere
,
F.
, and
Giglio
,
M.
,
2019
, “
State-of-Life Prognosis and Diagnosis of Lithium-Ion Batteries by Data-Driven Particle Filters
,”
Appl. Energy.
,
235
, pp.
661
672
.
9.
Saxena
,
S.
,
Kang
,
M.
,
Xing
,
Y.
, and
Pecht
,
M.
,
2018
, “
Anomaly Detection During Lithium-Ion Battery Qualification Testing
,”
2018 IEEE International Conference on Prognostics and Health Management (ICPHM)
,
Seattle, WA
, IEEE, pp.
1
6
.
10.
Piao
,
C.
,
Wang
,
Z.
,
Cao
,
J.
,
Zhang
,
W.
, and
Lu
,
S.
,
2015
, “
Lithium-Ion Battery Cell-Balancing Algorithm for Battery Management System Based on Real-Time Outlier Detection
,”
Math. Probl. Eng.
,
2015
, p.
168529
.
11.
Khalastchi
,
E.
,
Kalech
,
M.
,
Kaminka
,
G. A.
, and
Lin
,
R.
,
2015
, “
Online Data-Driven Anomaly Detection in Autonomous Robots
,”
Knowledge Inform. Syst.
,
43
(
3
), pp.
657
688
.
12.
Haider
,
S. N.
,
Zhao
,
Q.
, and
Li
,
X.
,
2020
, “
Data Driven Battery Anomaly Detection Based on Shape Based Clustering for the Data Centers Class
,”
J. Energy Storage
,
29
, p.
101479
.
13.
Zhang
,
C.
,
Jiang
,
Y.
,
Jiang
,
J.
,
Cheng
,
G.
,
Diao
,
W.
, and
Zhang
,
W.
,
2017
, “
Study on Battery Pack Consistency Evolutions and Equilibrium Diagnosis for Serial-Connected Lithium-Ion Batteries
,”
Appl. Energy.
,
207
, pp.
510
519
.
14.
Breunig
,
M. M.
,
Kriegel
,
H.-P.
,
Ng
,
R. T.
, and
Sander
,
J.
,
2000
, “
Lof: Identifying Density-Based Local Outliers
,”
Proceedings of the 2000 ACM SIGMOD International Conference on Management of Data
,
Dallas, TX
, pp.
93
104
.
15.
Chen
,
Z.
,
Xu
,
K.
,
Wei
,
J.
, and
Dong
,
G.
,
2019
, “
Voltage Fault Detection for Lithium-ion Battery Pack Using Local Outlier Factor
,”
Measurement
,
146
, pp.
544
556
.
16.
Yun
,
L.
,
Sandoval
,
J.
,
Zhang
,
J.
,
Gao
,
L.
,
Garg
,
A.
, and
Wang
,
C.-T.
,
2019
, “
Lithium-Ion Battery Packs Formation With Improved Electrochemical Performance for Electric Vehicles: Experimental and Clustering Analysis
,”
ASME J. Electrochem. Energy. Convers. Storage.
,
16
(
2
), p.
021011
.
17.
Wang
,
Y.
,
Tan
,
J.
,
Liu
,
Z.
, and
Ditta
,
A.
,
2020
, “
Lithium-Ion Battery Screening by K-Means With Dbscan for Denoising
,”
CMC-Comput. Mater. Cont.
,
65
(
3
), pp.
2111
2122
.
18.
Bai
,
X.
,
Tan
,
J.
,
Wang
,
X.
,
Wang
,
L.
,
Liu
,
C.
,
Shi
,
L.
, and
Sun
,
W.
,
2019
, “
Study on Distributed Lithium-Ion Power Battery Grouping Scheme for Efficiency and Consistency Improvement
,”
J. Cleaner. Prod.
,
233
, pp.
429
445
.
19.
Kingma
,
D. P.
, and
Welling
,
M.
,
2013
, “
Auto-Encoding Variational Bayes
.”
Preprint arXiv:1312.6114
.
20.
Liu
,
C.
,
Tan
,
J.
, and
Wang
,
X.
,
2020
, “
A Data-driven Decision-Making Optimization Approach for Inconsistent Lithium-Ion Cell Screening
,”
J. Intell. Manufact.
,
31
, pp.
833
845
.
21.
Albawi
,
S.
,
Mohammed
,
T. A.
, and
Al-Zawi
,
S.
,
2017
, “
Understanding of a Convolutional Neural Network
,”
2017 International Conference on Engineering and Technology (ICET)
,
Antalya, Turkey
,
IEEE
, pp.
1
6
.
22.
O’Shea
,
K.
, and
Nash
,
R.
,
2015
, “
An Introduction to Convolutional Neural Networks
.”
Preprint arXiv:1511.08458
.
23.
Liu
,
C.
,
Tan
,
J.
,
Shi
,
H.
, and
Wang
,
X.
,
2018
, “
Lithium-Ion Cell Screening With Convolutional Neural Networks Based on Two-Step Time-Series Clustering and Hybrid Resampling for Imbalanced Data
,”
IEEE Access
,
6
, pp.
59001
59014
.
24.
Singh
,
A.
,
2017
,
Anomaly Detection for Temporal Data Using Long Short-Term Memory (LSTM)
,
Master thesis
,
KTH Information and Communication Technology
, pp.
1
61
.
25.
Petit
,
C.
, and
Lambin
,
E. F.
,
2001
, “
Integration of Multi-Source Remote Sensing Data for Land Cover Change Detection
,”
Int. J. Geograph. Inform. Sci.
,
15
(
8
), pp.
785
803
.
26.
Gers
,
F. A.
,
Schmidhuber
,
J.
, and
Cummins
,
F.
,
1999
, “
Learning to Forget: Continual Prediction With LSTM
,”
Ninth International Conference on Artificial Neural Networks ICANN 99
. (
Conf. Publ. No. 470
), Vol.
2
, pp.
850
855
.
27.
Greff
,
K.
,
Srivastava
,
R. K.
,
Koutník
,
J.
,
Steunebrink
,
B. R.
, and
Schmidhuber
,
J.
,
2016
, “
Lstm: A Search Space Odyssey
,”
IEEE Trans. Neural Netw. Learn. Syst.
,
28
(
10
), pp.
2222
2232
.
You do not currently have access to this content.