Abstract

Although hydrogen has one of the highest specific energies, its energy density in terms of volume is very poor compared to liquid fuels. Thus, to achieve attractive energy density for hydrogen, either high-pressure compression or a storage method is needed. For onboard (vehicles) hydrogen storage, up to 700 bars are needed for commercial fuel cell vehicles. This creates extreme requirements for material strength and thus safety concerns. A new metal-organic framework 5 (MOF-5) was selected as the adsorbent for H2 storage, as it provides promising storage capacity and is commercially available. Under the same H2 storage capacity and tank volume, the adsorption system is expected several folds reduction in pressure. Under the current study, a unique thermal management design using Modular Adsorbing Tank Insert (MATI) is paired with conduction-enhanced compressed MOF-5 beds. Compared to bare beds without conduction enhancement, all beds with conduction enhancement using either aluminum pins or expanded natural graphite (ENG) have shown various levels of improvement on bed thermal response, which can potentially help expedite system charge and discharge cycle times for real applications.

References

References
1.
Tamburello
,
D.
,
Hardy
,
B.
,
Sulic
,
M.
,
Kesterson
,
M.
,
Corgnale
,
C.
, and
Anton
,
D.
,
2018
, “
Compact Cryo-adsorbent Hydrogen Storage Systems for Fuel Cell Vehicles
,”
Paper No. POWER2018-7474, V001T06A025
; pp.
1
9
, vol.
1
. http://dx.doi.org/10.1115/POWER2018-7474
2.
Tamburello
,
D.
,
Hardy
,
B.
,
Corgnale
,
C.
,
Sulic
,
M.
, and
Anton
,
D.
,
2017
, “
Cryo-adsorbent Hydrogen Storage Systems for Fuel Cell Vehicles
,”
Paper No. FEDSM2017-69411, V01BT08A005
; pp.
1
10
. vol.
1B-2017
. http://dx.doi.org/10.1115/FEDSM2017-69411
3.
Corgnale
,
C.
,
Hardy
,
B.
,
Chahine
,
R.
,
Zacharia
,
R.
, and
Cossement
,
D.
,
2019
, “
Hydrogen Storage in a Two-Liter Adsorbent Prototype Tank for Fuel Cell Driven Vehicles
,”
Appl. Energy
,
250
, pp.
333
343
. 10.1016/j.apenergy.2019.05.055
4.
Chen
,
Z.
,
Li
,
P.
,
Anderson
,
R.
,
Wang
,
X.
,
Zhang
,
X.
,
Robison
,
L.
,
Redfern
,
L. R.
,
Moribe
,
S.
,
Islamoglu
,
T.
,
Gomez-Gualdron
,
D. A.
,
Yildirim
,
T.
,
Stoddart
,
J. F.
, and
Farha
,
O. K.
,
2020
, “
Balancing Volumetric and Gravimetric Uptake in Highly Porous Materials for Clean Energy
,”
Science
,
368
(
6488
), pp.
297
303
. 10.1126/science.aaz8881
5.
Ahmed
,
A.
,
Liu
,
Y.
,
Purewal
,
J.
,
Tran
,
L.
,
Wong-Foy
,
A.
,
Veenstra
,
M.
,
Matzger
,
A.
, and
Siegel
,
D.
,
2017
, “
Balancing Gravimetric and Volumetric Hydrogen Density in MOFs
,”
Energy Environ. Sci.
,
10
(
11
), pp.
2459
2471
. 10.1039/C7EE02477K
6.
Corgnale
,
C.
,
Hardy
,
B.
,
Chahine
,
R.
,
Cossement
,
D.
,
Tamburello
,
D.
, and
Anton
,
D.
,
2014
, “
Simulation of Hydrogen Adsorption Systems Adopting the Flow Through Cooling Concept
,”
Int. J. Hydrogen Energy
,
39
(
30
), pp.
17083
17091
. 10.1016/j.ijhydene.2014.08.029
7.
Corgnale
,
C.
,
Hardy
,
B.
,
Chahine
,
R.
, and
Cossement
,
D.
,
2018
, “
Hydrogen Desorption Using Honeycomb Finned Heat Exchangers Integrated in Adsorbent Storage Systems
,”
Appl. Energy
,
213
, pp.
426
434
. 10.1016/j.apenergy.2018.01.003
8.
Li
,
H.
,
Eddaoudi
,
M.
,
O’Keeffe
,
M.
, and
Yaghi
,
O. M.
,
1999
, “
Design and Synthesis of an Exceptionally Stable and Highly Porous Metal-Organic Framework
,”
Nature
,
402
(
6759
), pp.
276
279
. 10.1038/46248
9.
James
,
S. L.
,
2003
, “
Metal-Organic Frameworks
,”
Chem. Soc. Rev.
,
32
(
5
), pp.
276
288
. 10.1039/b200393g
10.
Saha
,
D.
,
Bao
,
Z.
,
Jia
,
F.
, and
Deng
,
S.
,
2010
, “
Adsorption of CO2, CH4, N2O, and N2 on MOF-5, MOF-177, and Zeolite 5A
,”
Environ. Sci. Technol.
,
44
(
5
), pp.
1820
1826
. 10.1021/es9032309
11.
Yang
,
J.
,
Sudik
,
A.
,
Wolverton
,
C.
, and
Siegel
,
D. J.
,
2010
, “
High Capacity Hydrogen Storage Materials: Attributes for Automotive Applications and Techniques for Materials Discovery
,”
Chem. Soc. Rev.
,
39
(
2
), pp.
656
675
. 10.1039/B802882F
12.
Li
,
J.
,
Cheng
,
S.
,
Zhao
,
Q.
,
Long
,
P.
, and
Dong
,
J.
,
2009
, “
Synthesis and Hydrogen-Storage Behavior of Metal–Organic Framework MOF-5
,”
Int. J. Hydrogen Energy
,
34
(
3
), pp.
1377
1382
. 10.1016/j.ijhydene.2008.11.048
13.
Saha
,
D.
,
Deng
,
S.
, and
Yang
,
Z.
,
2009
, “
Hydrogen Adsorption on Metal-Organic Framework (MOF-5) Synthesized by DMF Approach
,”
J. Porous Mater.
,
16
(
2
), pp.
141
149
. 10.1007/s10934-007-9178-3
14.
Sillar
,
K.
,
Hofmann
,
A.
, and
Sauer
,
J.
,
2009
, “
Ab initio Study of Hydrogen Adsorption in MOF-5
,”
J. Am. Chem. Soc.
,
131
(
11
), pp.
4143
4150
. 10.1021/ja8099079
15.
DeSantis
,
D.
,
Mason
,
J. A.
,
James
,
B. D.
,
Houchins
,
C.
,
Long
,
J. R.
, and
Veenstra
,
M.
,
2017
, “
Techno-economic Analysis of Metal-Organic Frameworks for Hydrogen and Natural Gas Storage
,”
Energy and Fuels
,
31
(
2
), pp.
2024
2032
. 10.1021/acs.energyfuels.6b02510
16.
Ming
,
Y.
,
Purewal
,
J.
,
Yang
,
J.
,
Xu
,
C.
,
Veenstra
,
M.
,
Gaab
,
M.
,
Muller
,
U.
, and
Siegel
,
D. J.
,
2016
, “
Stability of MOF-5 in a Hydrogen Gas Environment Containing Fueling Station Impurities
,”
Int. J. Hydrogen Energy
,
41
(
22
), pp.
9374
9382
. 10.1016/j.ijhydene.2016.03.155
17.
Sridhar
,
P.
, and
Kaisare
,
N. S.
,
2020
, “
A Critical Analysis of Transport Models for Refueling of MOF-5 Based Hydrogen Adsorption System
,”
J. Ind. Eng. Chem.
,
85
, pp.
170
180
. 10.1016/j.jiec.2020.01.038
18.
Montes-Andrés
,
H.
,
Leo
,
P.
,
Orcajo
,
G.
,
Rodriguez-Dieguez
,
A.
,
Choquesillo-Lazarte
,
D.
,
Martos
,
C.
,
Botas
,
J. A.
,
Martinez
,
F.
, and
Calleja
,
G.
,
2019
, “
Novel and Versatile Cobalt Azobenzene-Based Metal-Organic Framework as Hydrogen Adsorbent
,”
ChemPhysChem
,
20
(
10
), pp.
1334
1339
. 10.1002/cphc.201801151
19.
Yu
,
S.
,
Li
,
S.
,
Meng
,
X.
,
Wan
,
C.
, and
Ju
,
X.
,
2018
, “
Tuning the Hydrogen Adsorption Properties of Zn–Based Metal–Organic Frameworks: Combined DFT and GCMC Simulations
,”
J. Solid State Chem.
,
266
, pp.
31
36
. 10.1016/j.jssc.2018.04.033
20.
Chen
,
S.
,
Shi
,
Y.
, and
Gu
,
B.
,
2018
, “
Simulation on Hydrogen Storage Properties of Metal-Organic Frameworks Cu-BTC at 77–298K
,”
AIChE J.
,
64
(
4
), pp.
1383
1388
. 10.1002/aic.16008
21.
Kaye
,
S. S.
,
Dailly
,
A.
,
Yaghi
,
O. M.
, and
Long
,
J. R.
,
2007
, “
Impact of Preparation and Handling on the Hydrogen Storage Properties of Zn4O(1,4-Benzenedicarboxylate)3 (MOF-5)
,”
J. Am. Chem. Soc.
,
129
(
46
), pp.
14176
14177
. 10.1021/ja076877g
22.
Schmitz
,
B.
,
Müller
,
U.
,
Trukhan
,
N.
,
Schubert
,
M.
,
Férey
,
G.
, and
Hirscher
,
M.
,
2008
, “
Heat of Adsorption for Hydrogen in Microporous High-Surface-Area Materials
,”
ChemPhysChem
,
9
(
15
), pp.
2181
2184
. 10.1002/cphc.200800463
23.
Hydrogen Storage
,”
Energy.gov.
https://www.energy.gov/eere/fuelcells/hydrogen-storage, Accessed July 11, 2020.
24.
Gómez-Gualdrón
,
D. A.
,
Wang
,
T. C.
,
Garcia-Holley
,
P.
,
Sawelewa
,
R. M.
,
Argueta
,
E.
,
Snurr
,
R. Q.
,
Hupp
,
J. T.
,
Yildirim
,
T.
, and
Farha
,
O. K.
,
2017
, “
Understanding Volumetric and Gravimetric Hydrogen Adsorption Trade-Off in Metal-Organic Frameworks
,”
ACS Appl. Mater. Interfaces
,
9
(
39
), pp.
33419
33428
. 10.1021/acsami.7b01190
25.
Palla
,
S.
, and
Kaisare
,
N. S.
,
2020
, “
Evaluating the Impact of Pellet Densification and Graphite Addition for Design of On-Board Hydrogen Storage in a Fixed Bed of MOF-5 Pellets
,”
Int. J. Hydrogen Energy
,
45
, pp.
25875
25889
.
26.
Purewal
,
J. J.
,
Liu
,
D.
,
Yang
,
J.
,
Sudik
,
A.
,
Siegel
,
D. J.
,
Maurer
,
S.
, and
Muller
,
U.
,
2012
, “
Increased Volumetric Hydrogen Uptake of MOF-5 by Powder Densification
,”
Int. J. Hydrogen Energy
,
37
(
3
), pp.
2723
2727
. 10.1016/j.ijhydene.2011.03.002
27.
Liu
,
D.
,
Purewal
,
J. J.
,
Yang
,
J.
,
Sudik
,
A.
,
Maurer
,
S.
,
Mueller
,
U.
,
Ni
,
J.
, and
Siegel
,
D. J.
,
2012
, “
MOF-5 Composites Exhibiting Improved Thermal Conductivity
,”
Int. J. Hydrogen Energy
,
37
(
7
), pp.
6109
6117
. 10.1016/j.ijhydene.2011.12.129
28.
Rodrı´guez Sánchez
,
A.
,
Klein
,
H.-P.
, and
Groll
,
M.
,
2003
, “
Expanded Graphite as Heat Transfer Matrix in Metal Hydride Beds
,”
Int. J. Hydrogen Energy
,
28
(
5
), pp.
515
527
. 10.1016/S0360-3199(02)00057-5
29.
Ichikawa
,
T.
,
Chen
,
D. M.
,
Isobe
,
S.
,
Gomibuchi
,
E.
, and
Fujii
,
H.
,
2004
, “
Hydrogen Storage Properties on Mechanically Milled Graphite
,”
Mater. Sci. Eng.: B
,
108
(
1
), pp.
138
142
. 10.1016/j.mseb.2003.10.094
30.
Burtch
,
N. C.
,
Jasuja
,
H.
, and
Walton
,
K. S.
,
2014
, “
Water Stability and Adsorption in Metal–Organic Frameworks
,”
Chem. Rev.
,
114
(
20
), pp.
10575
10612
. 10.1021/cr5002589
You do not currently have access to this content.