Abstract

Lithium–sulfur (Li–S) batteries have been research hotspots because of their significant advantages in high-energy density and low cost. However, the notorious shuttle effect results in poor electrochemical performance, which is a serious obstacle for their practical application. The delicate design of sulfur hosts is a very important strategy to suppress the shuttle effect. Herein, MXene nanoflakes confined within multichannel carbon nanofibers (MXene@MCNF) have been successfully synthesized as robust electrocatalysts for Li–S batteries based on a simple electrospun method followed by a carbonization process. This unique structure effectively prevents the restacking of MXene nanoflakes, which is conducive to improve the electrocatalytic activity of MXene for propelling the redox reaction of polysulfides owing to the abundant exposure of surface active sites. Moreover, the multichannel hollow structure can inhibit the outward dissolution of polysulfides via the physical confinement caused by their abundant pore structures and alleviate the huge volume change of sulfur cathode. Benefiting from these aforementioned advantages, MXene@MCNF-sulfur (MXene@MCNF-S) cathode delivers a high capacity of 1177 mA h/g at 0.2 C and excellent cycling stability after 200 cycles at 2.0 C.

References

1.
Li
,
Z.
,
Wu
,
H. B.
, and
Lou
,
X. W.
,
2016
, “
Rational Designs and Engineering of Hollow Micro-/Nanostructures as Sulfur Hosts for Advanced Lithium–Sulfur Batteries
,”
Energy Environ. Sci.
,
9
(
10
), pp.
3061
3070
.
2.
Zhao
,
M.
,
Li
,
B. Q.
,
Zhang
,
X. Q.
,
Huang
,
J. Q.
, and
Zhang
,
Q.
,
2020
, “
A Perspective Toward Practical Lithium–Sulfur Batteries
,”
ACS Cent. Sci.
,
6
(
7
), pp.
1095
1104
.
3.
Bhargav
,
A.
,
He
,
J. R.
,
Gupta
,
A.
, and
Manthiram
,
A.
,
2020
, “
Lithium–Sulfur Batteries: Attaining the Critical Metrics
,”
Joule
,
4
(
2
), pp.
285
291
.
4.
Wang
,
Z. S.
,
Shen
,
J. D.
,
Ji
,
S. M.
,
Xu
,
X. J.
,
Zuo
,
S. Y.
,
Liu
,
Z. B.
,
Zhang
,
D. C.
,
Hu
,
R. Z.
,
Ouyang
,
L. Z.
,
Liu
,
J.
, and
Zhu
,
M.
,
2020
, “
B,N Codoped Graphitic Nanotubes Loaded with Co Nanoparticles as Superior Sulfur Host for Advanced Li–S Batteries
,”
Small
,
16
(
7
), p.
1906634
.
5.
Wang
,
R. C.
,
Luo
,
C.
,
Wang
,
T. S.
,
Zhou
,
G. M.
,
Deng
,
Y. Q.
,
He
,
Y. B.
,
Zhang
,
Q. F.
,
Kang
,
F. Y.
,
Lv
,
W.
, and
Yang
,
Q. H.
,
2020
, “
Bidirectional Catalysts for Liquid-Solid Redox Conversion in Lithium–Sulfur Batteries
,”
Adv. Mater.
,
32
(
32
), p.
2000315
.
6.
Zhang
,
Q. F.
,
Qiao
,
Z. S.
,
Cao
,
X. R.
,
Qu
,
B. H.
,
Yuan
,
J.
,
Fan
,
T. E.
,
Zheng
,
H. F.
,
Cui
,
J. Q.
,
Wu
,
S. Q.
,
Xie
,
Q. S.
, and
Peng
,
D. L.
,
2020
, “
Rational Integration of Spatial Confinement and Polysulfide Conversion Catalysts for High Sulfur Loading Lithium–Sulfur Batteries
,”
Nanoscale Horiz.
,
5
(
4
), pp.
720
729
.
7.
Zhang
,
Y. G.
,
Li
,
G. R.
,
Wang
,
J. Y.
,
Cui
,
G. L.
,
Wei
,
X. L.
,
Shui
,
L. L.
,
Kempa
,
K.
,
Zhou
,
G. F.
,
Wang
,
X.
, and
Chen
,
Z. W.
,
2020
, “
Hierarchical Defective Fe3-xC@C Hollow Microsphere Enables Fast and Long-Lasting Lithium–Sulfur Batteries
,”
Adv. Funct. Mater.
,
30
(
22
), p.
2001165
.
8.
Zhou
,
S. Y.
,
Yang
,
S.
,
Ding
,
X. W.
,
Lai
,
Y. C.
,
Nie
,
H. G.
,
Zhang
,
Y. G.
,
Chan
,
D.
,
Duan
,
H.
,
Huang
,
S. M.
, and
Yang
,
Z.
,
2020
, “
Dual-Regulation Strategy to Improve Anchoring and Conversion of Polysulfides in Lithium–Sulfur Batteries
,”
ACS Nano
,
14
(
6
), pp.
7538
7551
.
9.
Wang
,
D. S.
,
Li
,
F.
,
Lian
,
R. Q.
,
Xu
,
J.
,
Kan
,
D. X.
,
Liu
,
Y. H.
,
Chen
,
G.
,
Gogotsi
,
Y.
, and
Wei
,
Y. J.
,
2019
, “
A General Atomic Surface Modification Strategy for Improving Anchoring and Electrocatalysis Behavior of Ti3C2T2 MXene in Lithium–Sulfur Batteries
,”
ACS Nano
,
13
(
10
), pp.
11078
11086
.
10.
Luo
,
D.
,
Zhang
,
Z.
,
Li
,
G. R.
,
Cheng
,
S. B.
,
Li
,
S.
,
Li
,
J. D.
,
Gao
,
R.
,
Li
,
M.
,
Sy
,
S.
,
Deng
,
Y. P.
,
Jiang
,
Y.
,
Zhu
,
Y. F.
,
Dou
,
H. Z.
,
Hu
,
Y. F.
,
Yu
,
A. P.
, and
Chen
,
Z. W.
,
2020
, “
Revealing the Rapid Electrocatalytic Behavior of Ultrafine Amorphous Defective Nb2O5−x Nanocluster toward Superior Li–S Performance
,”
ACS Nano
,
14
(
4
), pp.
4849
4860
.
11.
Li
,
Z.
,
Zhang
,
J. T.
,
Chen
,
Y. M.
,
Li
,
J.
, and
Lou
,
X. W.
,
2015
, “
Pie-Like Electrode Design for High-Energy Density Lithium–Sulfur Batteries
,”
Nat. Commun.
,
6
(
1
), p.
8850
.
12.
Li
,
Z.
,
Zhang
,
J. T.
, and
Lou
,
X. W.
,
2015
, “
Hollow Carbon Nanofibers Filled with MnO2 Nanosheets as Efficient Sulfur Hosts for Lithium–Sulfur Batteries
,”
Angew. Chem. Int. Ed.
,
54
(
44
), pp.
12886
12890
.
13.
Xie
,
J.
,
Li
,
B. Q.
,
Peng
,
H. J.
,
Song
,
Y. W.
,
Zhao
,
M.
,
Chen
,
X.
,
Zhang
,
Q.
, and
Huang
,
J. Q.
,
2019
, “
Implanting Atomic Cobalt within Mesoporous Carbon toward Highly Stable Lithium–Sulfur Batteries
,”
Adv. Mater.
,
31
(
43
), p.
1903813
.
14.
Song
,
Y. Z.
,
Cai
,
W. L.
,
Kong
,
L.
,
Cai
,
J. S.
,
Zhang
,
Q.
, and
Sun
,
J. Y.
,
2020
, “
Rationalizing Electrocatalysis of Li–S Chemistry by Mediator Design: Progress and Prospects
,”
Adv. Energy Mater.
,
10
(
11
), p.
1901075
.
15.
Ji
,
X. L.
,
Lee
,
K. T.
, and
Nazar
,
L. F.
,
2009
, “
A Highly Ordered Nanostructured Carbon-Sulphur Cathode for Lithium–Sulphur Batteries
,”
Nat. Mater.
,
8
(
6
), pp.
500
506
.
16.
Ye
,
C.
,
Chao
,
D. L.
,
Shan
,
J. Q.
,
Li
,
H.
,
Davey
,
K.
, and
Qiao
,
S. Z.
,
2020
, “
Unveiling the Advances of 2D Materials for Li/Na–S Batteries Experimentally and Theoretically
,”
Matter
,
2
(
2
), pp.
323
344
.
17.
Zhang
,
J. T.
,
Li
,
Z.
,
Chen
,
Y.
,
Gao
,
S. Y.
, and
Lou
,
X. W.
,
2018
, “
Nickel–Iron Layered Double Hydroxide Hollow Polyhedrons as a Superior Sulfur Host for Lithium–Sulfur Batteries
,”
Angew. Chem. Int. Ed.
,
57
(
34
), pp.
10944
10948
.
18.
Li
,
Z.
,
Guan
,
B. Y.
,
Zhang
,
J. T.
, and
Lou
,
X. W.
,
2017
, “
A Compact Nanoconfined Sulfur Cathode for High-Performance Lithium–Sulfur Batteries
,”
Joule
,
1
(
3
), pp.
576
587
.
19.
Wang
,
J. N.
,
Yang
,
G. R.
,
Chen
,
J.
,
Liu
,
Y. P.
,
Wang
,
Y. K.
,
Lao
,
C. Y.
,
Xi
,
K.
,
Yang
,
D. W.
,
Harris
,
C. J.
,
Yan
,
W.
,
Ding
,
S. J.
, and
Kumar
,
R. V.
,
2019
, “
Flexible and High-Loading Lithium–Sulfur Batteries Enabled by Integrated Three-in-One Fibrous Membranes
,”
Adv. Energy Mater.
,
9
(
38
), p.
1902001
.
20.
Ye
,
C.
,
Zhang
,
L.
,
Guo
,
C. X.
,
Li
,
D. D.
,
Vasileff
,
A.
,
Wang
,
H. H.
, and
Qiao
,
S. Z.
,
2017
, “
A 3D Hybrid of Chemically Coupled Nickel Sulfide and Hollow Carbon Spheres for High Performance Lithium–Sulfur Batteries
,”
Adv. Funct. Mater.
,
27
(
33
), p.
1702524
.
21.
Sun
,
Z. X.
,
Vijay
,
S.
,
Heenen
,
H. H.
,
Eng
,
A. Y. S.
,
Tu
,
W. G.
,
Zhao
,
Y. X.
,
Koh
,
S. W.
,
Gao
,
P. Q.
,
Seh
,
Z. W.
,
Chan
,
K.
, and
Li
,
H.
,
2020
, “
Catalytic Polysulfide Conversion and Physiochemical Confinement for Lithium–Sulfur Batteries
,”
Adv. Energy Mater.
,
10
(
22
), p.
1904010
.
22.
Boyjoo
,
Y.
,
Shi
,
H. D.
,
Olsson
,
E.
,
Cai
,
Q.
,
Wu
,
Z. S.
,
Liu
,
J.
, and
Lu
,
G. Q.
,
2020
, “
Molecular-Level Design of Pyrrhotite Electrocatalyst Decorated Hierarchical Porous Carbon Spheres as Nanoreactors for Lithium–Sulfur Batteries
,”
Adv. Energy Mater.
,
10
(
20
), p.
2000651
.
23.
Yuan
,
Z.
,
Peng
,
H. J.
,
Hou
,
T. Z.
,
Huang
,
J. Q.
,
Chen
,
C. M.
,
Wang
,
D. W.
,
Cheng
,
X. B.
,
Wei
,
F.
, and
Zhang
,
Q.
,
2016
, “
Powering Lithium–Sulfur Battery Performance by Propelling Polysulfide Redox at Sulfiphilic Hosts
,”
Nano Lett.
,
16
(
1
), pp.
519
527
.
24.
Huang
,
X.
,
Tang
,
J. Y.
,
Luo
,
B.
,
Knibbe
,
R.
,
Lin
,
T. E.
,
Hu
,
H.
,
Rana
,
M.
,
Hu
,
Y. X.
,
Zhu
,
X. B.
,
Gu
,
Q. F.
,
Wang
,
D.
, and
Wang
,
L. Z.
,
2019
, “
Sandwich-Like Ultrathin TiS2 Nanosheets Confined within N, S Codoped Porous Carbon as an Effective Polysulfide Promoter in Lithium–Sulfur Batteries
,”
Adv. Energy Mater.
,
9
(
32
), p.
1901872
.
25.
Ma
,
L. B.
,
Zhang
,
W. J.
,
Wang
,
L.
,
Hu
,
Y.
,
Zhu
,
G. Y.
,
Wang
,
Y. R.
,
Chen
,
R. P.
,
Chen
,
T.
,
Tie
,
Z. X.
,
Liu
,
J.
, and
Jin
,
Z.
,
2018
, “
Strong Capillarity, Chemisorption, and Electrocatalytic Capability of Crisscrossed Nanostraws Enabled Flexible, High-Rate, and Long-Cycling Lithium–Sulfur Batteries
,”
ACS Nano
,
12
(
5
), pp.
4868
4876
.
26.
Chen
,
Y.
,
Zhang
,
W. X.
,
Zhou
,
D.
,
Tian
,
H. J.
,
Su
,
D. W.
,
Wang
,
C. Y.
,
Stockdale
,
D.
,
Kang
,
F. Y.
,
Li
,
B. H.
, and
Wang
,
G. X.
,
2019
, “
Co–Fe Mixed Metal Phosphide Nanocubes with Highly Interconnected-Pore Architecture as an Efficient Polysulfide Mediator for Lithium–Sulfur Batteries
,”
ACS Nano
,
13
(
4
), pp.
4731
4741
.
27.
Xiao
,
Z. B.
,
Yang
,
Z.
,
Li
,
Z. L.
,
Li
,
P. Y.
, and
Wang
,
R. H.
,
2019
, “
Synchronous Gains of Areal and Volumetric Capacities in Lithium–Sulfur Batteries Promised by Flower-Like Porous Ti3C2Tx Matrix
,”
ACS Nano
,
13
(
3
), pp.
3404
3412
.
28.
Jiao
,
L.
,
Zhang
,
C.
,
Geng
,
C. N.
,
Wu
,
S. C.
,
Li
,
H.
,
Lv
,
W.
,
Tao
,
Y.
,
Chen
,
Z. J.
,
Zhou
,
G. M.
,
Li
,
J.
,
Ling
,
G. W.
,
Wan
,
Y.
, and
Yang
,
Q. H.
,
2019
, “
Capture and Catalytic Conversion of Polysulfides by In Situ Built TiO2-MXene Heterostructures for Lithium–Sulfur Batteries
,”
Adv. Energy Mater.
,
9
(
19
), p.
1900219
.
29.
Yao
,
Y.
,
Feng
,
W. L.
,
Chen
,
M. L.
,
Zhong
,
X. W.
,
Wu
,
X. J.
,
Zhang
,
H. B.
, and
Yu
,
Y.
,
2018
, “
Boosting the Electrochemical Performance of Li–S Batteries with a Dual Polysulfides Confinement Strategy
,”
Small
,
14
(
42
), p.
1802516
.
30.
Xiao
,
Z. B.
,
Li
,
Z. L.
,
Meng
,
X. P.
, and
Wang
,
R. H.
,
2019
, “
MXene-Engineered Lithium–Sulfur Batteries
,”
J. Mater. Chem. A
,
7
(
40
), pp.
22730
22743
.
31.
Liang
,
X.
,
Garsuch
,
A.
, and
Nazar
,
L. F.
,
2015
, “
Sulfur Cathodes Based on Conductive MXene Nanosheets for High-Performance Lithium–Sulfur Batteries
,”
Angew. Chem. Int. Ed.
,
54
(
13
), pp.
3907
3911
.
32.
Liang
,
X.
,
Rangom
,
Y.
,
Kwok
,
C. Y.
,
Pang
,
Q.
, and
Nazar
,
L. F.
,
2017
, “
Interwoven MXene Nanosheet/Carbon-Nanotube Composites as Li–S Cathode Hosts
,”
Adv. Mater.
,
29
(
3
), p.
1603040
.
33.
Dong
,
Y. F.
,
Zheng
,
S. H.
,
Qin
,
J. Q.
,
Zhao
,
X. J.
,
Shi
,
H. D.
,
Wang
,
X. H.
,
Chen
,
J.
, and
Wu
,
Z. S.
,
2018
, “
All-MXene-Based Integrated Electrode Constructed by Ti3C2 Nanoribbon Framework Host and Nanosheet Interlayer for High-Energy-Density Li–S Batteries
,”
ACS Nano
,
12
(
3
), pp.
2381
2388
.
34.
Bao
,
W. Z.
,
Liu
,
L.
,
Wang
,
C. Y.
,
Choi
,
S.
,
Wang
,
D.
, and
Wang
,
G. X.
,
2018
, “
Facile Synthesis of Crumpled Nitrogen-Doped MXene Nanosheets as a New Sulfur Host for Lithium–Sulfur Batteries
,”
Adv. Energy Mater.
,
8
(
13
), p.
1702485
.
35.
Gan
,
R. Y.
,
Yang
,
N.
,
Dong
,
Q.
,
Fu
,
N.
,
Wu
,
R.
,
Li
,
C. P.
,
Liao
,
Q.
,
Li
,
J.
, and
Wei
,
Z. D.
,
2020
, “
Enveloping Ultrathin Ti3C2 Nanosheets on Carbon Fibers: A High-Density Sulfur Loaded Lithium–Sulfur Battery Cathode with Remarkable Cycling Stability
,”
J. Mater. Chem. A
,
8
(
15
), pp.
7253
7260
.
36.
Zhou
,
H. Y.
,
Sui
,
Z. Y.
,
Amin
,
K.
,
Lin
,
L. W.
,
Wang
,
H. Y.
, and
Han
,
B. H.
,
2020
, “
Investigating the Electrocatalysis of a Ti3C2/Carbon Hybrid in Polysulfide Conversion of Lithium–Sulfur Batteries
,”
ACS Appl. Mater. Interfaces
,
12
(
12
), pp.
13904
13913
.
37.
Song
,
Y. Z.
,
Sun
,
Z. T.
,
Fan
,
Z. D.
,
Cai
,
W. L.
,
Shao
,
Y. L.
,
Sheng
,
G.
,
Wang
,
M. L.
,
Song
,
L. X.
,
Liu
,
Z. F.
,
Zhang
,
Q.
, and
Sun
,
J. Y.
,
2020
, “
Rational Design of Porous Nitrogen-Doped Ti3C2 MXene as a Multifunctional Electrocatalyst for Li–S Chemistry
,”
Nano Energy
,
70
, p.
104555
.
38.
Song
,
J. J.
,
Guo
,
X.
,
Zhang
,
J. Q.
,
Chen
,
Y.
,
Zhang
,
C. Y.
,
Luo
,
L. Q.
,
Wang
,
F. Y.
, and
Wang
,
G. X.
,
2019
, “
Rational Design of Free-Standing 3D Porous MXene/rGO Hybrid Aerogels as Polysulfide Reservoirs for High-Energy Lithium–Sulfur Batteries
,”
J. Mater. Chem. A
,
7
(
11
), pp.
6507
6513
.
39.
Gao
,
X. T.
,
Xie
,
Y.
,
Zhu
,
X. D.
,
Sun
,
K. N.
,
Xie
,
X. M.
,
Liu
,
Y. T.
,
Yu
,
J. Y.
, and
Ding
,
B.
,
2018
, “
Ultrathin MXene Nanosheets Decorated with TiO2 Quantum Dots as an Efficient Sulfur Host toward Fast and Stable Li–S Batteries
,”
Small
,
14
(
41
), p.
1802443
.
40.
Shahzad
,
F.
,
Alhabeb
,
M.
,
Hatter
,
C. B.
,
Anasori
,
B.
,
Man Hong
,
S.
,
Koo
,
C. M.
, and
Gogotsi
,
Y.
,
2016
, “
Electromagnetic Interference Shielding with 2D Transition Metal Carbides (MXenes)
,”
Science
,
353
(
6304
), pp.
1137
1140
.
41.
Liang
,
J.
,
Zhou
,
R. F.
,
Chen
,
X. M.
,
Tang
,
Y. H.
, and
Qiao
,
S. Z.
,
2014
, “
Fe–N Decorated Hybrids of CNTs Grown on Hierarchically Porous Carbon for High-Performance Oxygen Reduction
,”
Adv. Mater.
,
26
(
35
), pp.
6074
6079
.
42.
Zeng
,
C.
,
Xie
,
F. X.
,
Yang
,
X. F.
,
Jaroniec
,
M.
,
Zhang
,
L.
, and
Qiao
,
S. Z.
,
2018
, “
Ultrathin Titanate Nanosheets/Graphene Films Derived from Confined Transformation for Excellent Na/K Ion Storage
,”
Angew. Chem. Int. Ed.
,
57
(
28
), pp.
8540
8544
.
43.
Yuan
,
B. B.
,
Sun
,
X. Z.
,
Zeng
,
L. C.
,
Yu
,
Y.
, and
Wang
,
Q. S.
,
2018
, “
A Freestanding and Long-Life Sodium–Selenium Cathode by Encapsulation of Selenium into Microporous Multichannel Carbon Nanofibers
,”
Small
,
14
(
9
), p.
1703252
.
44.
Allah
,
A. E.
,
Wang
,
J.
,
Kaneti
,
Y. V.
,
Li
,
T.
,
Farghali
,
A. A.
,
Khedr
,
M. H.
,
Nanjundan
,
A. K.
,
Ding
,
B.
,
Dou
,
H.
,
Zhang
,
X. G.
,
Yoshio
,
B.
, and
Yamauchi
,
Y.
,
2019
, “
Auto-Programmed Heteroarchitecturing: Self-Assembling Ordered Mesoporous Carbon between Two-Dimensional Ti3C2Tx MXene Layers
,”
Nano Energy
,
65
, p.
103991
.
45.
Lv
,
L. P.
,
Guo
,
C. F.
,
Sun
,
W. W.
, and
Wang
,
Y.
,
2019
, “
Strong Surface-Bound Sulfur in Carbon Nanotube Bridged Hierarchical Mo2C-Based MXene Nanosheets for Lithium–Sulfur Batteries
,”
Small
,
15
(
3
), p.
1804338
.
46.
Wang
,
J. L.
,
Zhang
,
Z.
,
Yan
,
X. F.
,
Zhang
,
S. L.
,
Wu
,
Z. H.
,
Zhuang
,
Z. H.
, and
Han
,
W. Q.
,
2020
, “
Rational Design of Porous N-Ti3C2 MXene@CNT Microspheres for High Cycling Stability in Li–S Battery
,”
Nano-Micro Lett.
,
12
(
1
), p.
4
.
47.
Wang
,
J.
,
Chang
,
Z.
,
Ding
,
B.
,
Li
,
T.
,
Yang
,
G. L.
,
Pang
,
Z. B.
,
Nakato
,
T.
,
Eguchi
,
M.
,
Kang
,
Y. M.
,
Na
,
J.
,
Guan
,
B. Y.
, and
Yamauchi
,
Y.
,
2020
, “
Universal Access to Two-Dimensional Mesoporous Heterostructures by Micelle-Directed Interfacial Assembly
,”
Angew. Chem. Int. Ed.
,
59
(
44
), pp.
19570
19575
.
48.
Deng
,
C.
,
Wang
,
Z. W.
,
Feng
,
L. L.
,
Wang
,
S. P.
, and
Yu
,
J. X.
,
2020
, “
Electrocatalysis of Sulfur and Polysulfides in Li–S Batteries
,”
J. Mater. Chem. A
,
8
(
38
), pp.
19704
19728
.
You do not currently have access to this content.