Abstract

Among various methods for remaining useful life (RUL) prediction of lithium batteries, the data-driven approach shows the most attractive character for non-linear relation learning and accurate prediction. However, the existing neural network models for RUL prediction not only lack accuracy but also are time-consuming in model training. In this paper, the sequential convolutional neural network–long short-term memory (CNN–LSTM) method is proposed for accurate RUL prediction of lithium batteries. First, degradation trajectories are analyzed, and six features are adopted for RUL prediction. Then, the CNN model is introduced for filtering the data features of degradation characters. And the orthogonal experiment is studied for optimizing the hyperparameters of the CNN model. Furthermore, by inputting the time-series features flattened by CNN and non-time series feature, the LSTM is reconstructed for memorizing the long-term degradation data of lithium battery. Finally, the proposed method is validated by four cells under different aging conditions. Comparing with the isolated models, the RUL prediction of sequential CNN–LSTM method has higher accuracy.

References

1.
Li
,
Y.
,
Liu
,
K.
,
Foley
,
A. M.
,
Zulke
,
A.
,
Berecibar
,
M.
,
Nanini-Maury
,
E.
,
Van Mierlo
,
J.
, and
Hoster
,
H. E.
,
2019
, “
Data-Driven Health Estimation and Lifetime Prediction of Lithium-Ion Batteries: A Review
,”
Renewable Sustainable Energy Rev.
,
113
, p.
109254
.
2.
Xia
,
G.
,
Cao
,
L.
, and
Bi
,
G.
,
2017
, “
A Review on Battery Thermal Management in Electric Vehicle Application
,”
J. Power Sources
,
367
, pp.
90
105
.
3.
Li
,
X.
,
Ding
,
Q.
, and
Sun
,
J.-Q.
,
2018
, “
Remaining Useful Life Estimation in Prognostics Using Deep Convolution Neural Networks
,”
Reliab. Eng. Syst. Saf.
,
172
, pp.
1
11
.
4.
Cai
,
Y.
,
Yang
,
L.
,
Deng
,
Z.
,
Zhao
,
X.
, and
Deng
,
H.
,
2018
, “
Online Identification of Lithium-Ion Battery State-of-Health Based on Fast Wavelet Transform and Cross D-Markov Machine
,”
Energy
,
147
, pp.
621
635
.
5.
Sarmah
,
S. B.
,
Kalita
,
P.
,
Garg
,
A.
,
Niu
,
X.-D.
,
Zhang
,
X.-W.
,
Peng
,
X.
, and
Bhattacharjee
,
D.
,
2019
, “
A Review of State of Health Estimation of Energy Storage Systems: Challenges and Possible Solutions for Futuristic Applications of Li-Ion Battery Packs in Electric Vehicles
,”
ASME J. Electrochem. Energy Convers. Storage
,
16
(
4
), p.
040801
.
6.
Severson
,
K. A.
,
Attia
,
P. M.
,
Jin
,
N.
,
Perkins
,
N.
,
Jiang
,
B.
,
Yang
,
Z.
,
Chen
,
M. H.
,
Aykol
,
M.
,
Herring
,
P. K.
,
Fraggedakis
,
D.
,
Bazant
,
M. Z.
,
Harris
,
S. J.
,
Chueh
,
W. C.
, and
Braatz
,
R. D.
,
2019
, “
Data-driven Prediction of Battery Cycle Life Before Capacity Degradation
,”
Nat. Energy
,
4
(
5
), pp.
383
391
.
7.
Wu
,
B.
,
Yufit
,
V.
,
Merla
,
Y.
,
Martinez-Botas
,
R. F.
,
Brandon
,
N. P.
, and
Offer
,
G. J.
,
2015
, “
Differential Thermal Voltammetry for Tracking of Degradation in Lithium-Ion Batteries
,”
J. Power Sources
,
273
, pp.
495
501
.
8.
Shibagaki
,
T.
,
Merla
,
Y.
, and
Offer
,
G. J.
,
2018
, “
Tracking Degradation in Lithium Iron Phosphate Batteries Using Differential Thermal Voltammetry
,”
J. Power Sources
,
374
, pp.
188
195
.
9.
Zhang
,
Y.
,
Xiong
,
R.
,
He
,
H.
, and
Pecht
,
M. G.
,
2018
, “
Long Short-Term Memory Recurrent Neural Network for Remaining Useful Life Prediction of Lithium-Ion Batteries
,”
IEEE Trans. Vehicul. Technol.
,
67
(
7
), pp.
5695
5705
.
10.
Berecibar
,
M.
,
2019
, “
Accurate Predictions of Lithium-Ion Battery Life
,”
Nature
,
568
(
7752
), pp.
325
326
.
11.
Wu
,
J.
,
Zhang
,
C.
, and
Chen
,
Z.
,
2016
, “
An Online Method for Lithium-Ion Battery Remaining Useful Life Estimation Using Importance Sampling and Neural Networks
,”
Appl. Energy
,
173
, pp.
134
140
.
12.
Choi
,
Y.
,
Ryu
,
S.
,
Park
,
K.
, and
Kim
,
H.
,
2019
, “
Machine Learning-Based Lithium-Ion Battery Capacity Estimation Exploiting Multi-Channel Charging Profiles
,”
IEEE Access
,
7
, pp.
75143
75152
.
13.
Han
,
X.
,
Ouyang
,
M.
,
Lu
,
L.
, and
Li
,
J. Q.
,
2014
, “
A Comparative Study of Commercial Lithium Ion Battery Cycle Life in Electric Vehicle: Capacity Loss Estimation
,”
J. Power Sources
,
268
, pp.
658
669
.
14.
Li
,
W.
,
Jiao
,
Z.
,
Du
,
L.
,
Fan
,
W.
, and
Zhu
,
Y.
,
2019
, “
An Indirect RUL Prognosis for Lithium-Ion Battery Under Vibration Stress Using Elman Neural Network
,”
Int. J. Hydrogen Energy
,
44
(
23
), pp.
12270
12276
.
15.
Deng
,
Z.
,
Hu
,
X.
,
Lin
,
X.
,
Che
,
Y.
,
Xu
,
L.
, and
Guo
,
W.
,
2020
, “
Data-driven State of Charge Estimation for Lithium-ion Battery Packs Based on Gaussian Process Regression
,”
Energy
,
205
, p.
118000
.
16.
Patil
,
M. A.
,
Tagade
,
P.
,
Hariharan
,
K. S.
,
Kolake
,
S. M.
,
Song
,
T.
,
Yeo
,
T.
, and
Doo
,
S.
,
2015
, “
A Novel Multistage Support Vector Machine Based Approach for Li ion Battery Remaining Useful Life Estimation
,”
Appl. Energy
,
159
, pp.
285
297
.
17.
Wang
,
X.
,
Jiang
,
B.
, and
Lu
,
N.
,
2019
, “
Adaptive Relevant Vector Machine Based RUL Prediction Under Uncertain Conditions
,”
ISA Trans.
,
87
, pp.
217
224
.
18.
Li
,
X.
,
Yuan
,
C.
, and
Wang
,
Z.
,
2020
, “
Multi-time-scale Framework for Prognostic Health Condition of Lithium Battery Using Modified Gaussian Process Regression and Nonlinear Regression
,”
J. Power Sources
,
467
, p.
228358
.
19.
Deng
,
Z.
,
Hu
,
X.
,
Lin
,
X.
,
Xu
,
L.
, and
Hu
,
L.
,
2020
, “
General Discharge Voltage Information Enabled Health Evaluation for Lithium-Ion Batteries
,”
IEEE/ASME Trans. Mechatronics
,
99
, p.
3040010
.
20.
Cai
,
Y.
,
Yang
,
L.
,
Deng
,
Z.
,
Zhao
,
X.
, and
Deng
,
H.
,
2017
, “
Prediction of Lithium-Ion Battery Remaining Useful Life Based on Hybrid Data-Driven Method with Optimized Parameter
,”
2nd International Conference on Power and Renewable Energy
, pp.
1
6
.
21.
Assefi
,
M.
,
Hooshmand
,
A.
,
Hosseini
,
H.
, and
Sharma
,
R.
,
2018
, “
Battery Degradation Temporal Modeling Using LSTM Networks
,”
17th Ieee International Conference on Machine Learning and Applications
, pp.
853
858
.
22.
Wu
,
Y.
,
Yuan
,
M.
,
Dong
,
S.
,
Lin
,
L.
, and
Liu
,
Y.
,
2018
, “
Remaining Useful Life Estimation of Engineered Systems Using Vanilla LSTM Neural Networks
,”
Neurocomputing
,
275
, pp.
167
179
.
23.
Merla
,
Y.
,
Wu
,
B.
,
Yufit
,
V.
,
Brandon
,
N. P.
,
Martinez-Botas
,
R. F.
, and
Offer
,
G. J.
,
2016
, “
Novel Application of Differential Thermal Voltammetry as an in-Depth State-of-Health Diagnosis Method for Lithium-ion Batteries
,”
J. Power Sources
,
307
, pp.
308
319
.
24.
Bergstra
,
J.
, and
Bengio
,
Y.
,
2012
, “
Random Search for Hyper-Parameter Optimization
,”
J. Mach. Learn. Res.
,
13
, pp.
281
305
.
25.
Tobias
,
H.
,
Navarro-Guerrero
,
N.
,
Magg
,
S.
, and
Wermter
,
S.
,
2018
, “
Speeding up the Hyperparameter Optimization of Deep Convolutional Neural Networks
,”
Int. J. Comput. Intell. Appl.
,
17
(
2
), p.
1850008
.
26.
Saha
,
B.
, and
Goebel
,
K.
,
2007
,
Battery Data Set, NASA AMES Prognostics Data Repository
.
Moffett Field, CA
. https://ti.arc.nasa.gov/tech/dash/groups/pcoe/prognostic-data-repository/
27.
Zhu
,
J.
,
Dewi Darma
,
M. S.
,
Knapp
,
M.
,
Sørensen
,
D. R.
,
Heere
,
M.
,
Fang
,
Q.
,
Wang
,
X.
,
Dai
,
H.
,
Mereacre
,
L.
,
Senyshyn
,
A.
,
Wei
,
X.
, and
Ehrenberg
,
H.
,
2020
, “
Investigation of Lithium-Ion Battery Degradation Mechanisms by Combining Differential Voltage Analysis and Alternating Current Impedance
,”
J. Power Sources
,
448
, p.
227575
.
28.
Krizhevsky
,
A.
,
Sutskever
,
I.
, and
Hinton
,
G. E.
,
2017
, “
ImageNet Classification With Deep Convolutional Neural Networks
,”
Commun. ACM
,
60
(
6
), pp.
84
90
.
29.
Huang
,
Z.
,
Yang
,
F.
,
Xu
,
F.
,
Song
,
X.
, and
Tsui
,
K.-L.
,
2019
, “
Convolutional Gated Recurrent Unit-Recurrent Neural Network for State-of-Charge Estimation of Lithium-Ion Batteries
,”
IEEE Access
,
7
, pp.
93139
93149
.
30.
Chen
,
Z.
,
Song
,
X.
,
Xiao
,
R.
,
Shen
,
J.
, and
Xia
,
X.
,
2018
, “
State of Health Estimation for Lithium-Ion Battery Based on Long Short Term Memory Networks
,”
International Conference on Energy, Ecology and Environment
.
31.
Ma
,
G.
,
Zhang
,
Y.
,
Cheng
,
C.
,
Zhou
,
B.
,
Hu
,
P.
, and
Yuan
,
Y.
,
2019
, “
Remaining Useful Life Prediction of Lithium-ion Batteries Based on False Nearest Neighbors and a Hybrid Neural Network
,”
Appl. Energy
,
253
, p.
113626
.
32.
Li
,
J.
,
Li
,
X.
, and
He
,
D.
,
2019
, “
A Directed Acyclic Graph Network Combined With CNN and LSTM for Remaining Useful Life Prediction
,”
IEEE Access
,
7
, pp.
75464
75475
.
33.
Li
,
X.
,
Zhang
,
L.
,
Wang
,
Z.
, and
Dong
,
P.
,
2019
, “
Remaining Useful Life Prediction for Lithium-Ion Batteries Based on a Hybrid Model Combining the Long Short-Term Memory and Elman Neural Networks
,”
J. Energy Storage
,
21
, pp.
510
518
.
You do not currently have access to this content.