Abstract

A stable three-dimensional glucose/oxygen enzymatic biofuel cell is fabricated based on the method of polymer encapsulation-based immobilization. And three-dimensional carbon felt is used as the substrate of the bio-electrode for increasing enzymatic loading density. Gold nanoparticles and multi-wall carbon nanotubes are employed to promote direct electron transfer and enhance conductivity and electron conduction rate of bio-electrodes. Glucose dehydrogenase and bilirubin oxidase are immobilized with tetrabutylammonium bromide (TBAB) modified Nafion, which enhances the stability of the bio-electrodes by the immobilization method. A membrane-free glucose/oxygen biofuel cell is assembled with a high open-circuit voltage of 0.85 V and a maximum power density of 21.9 ± 0.1 μW/cm2 in 0.1 M pH 7.0 phosphate buffer solution with 100 mM glucose and air saturation. And the biofuel cell shows high stability to the condition. After 60 days of periodic storage experiments, the performance of the enzymatic biofuel cell still maintained 90.3% of its electrochemical performance.

References

1.
Macazo
,
F. C.
, and
Minteer
,
S. D.
,
2017
, “
Enzyme Cascades in Biofuel Cells
,”
Curr. Opin. Electrochem.
,
5
(
1
), pp.
114
120
. 10.1016/j.coelec.2017.07.010
2.
Kumar
,
A.
,
Sharma
,
S.
,
Pandey
,
L. M.
, and
Chandra
,
P.
,
2018
, “
Nanoengineered Material Based Biosensing Electrodes for Enzymatic Biofuel Cells Applications
,”
Mater. Sci. Energy Technol.
,
1
(
1
), pp.
38
48
.
3.
Cosnier
,
S.
,
Gross
,
A. J.
,
Giroud
,
F.
, and
Holzinger
,
M.
,
2018
, “
Beyond the Hype Surrounding Biofuel Cells: What’s the Future of Enzymatic Fuel Cells?
,”
Curr. Opin. Electrochem.
,
12
, pp.
148
155
. 10.1016/j.coelec.2018.06.006
4.
Zebda
,
A.
,
Alcaraz
,
J. P.
,
Vadgama
,
P.
,
Shleev
,
S.
,
Minteer
,
S. D.
,
Boucher
,
F.
,
Cinquin
,
P.
, and
Martin
,
D. K.
,
2018
, “
Challenges for Successful Implantation of Biofuel Cells
,”
Bioelectrochemistry
,
124
, pp.
57
72
. 10.1016/j.bioelechem.2018.05.011
5.
Huang
,
X.
,
Zhang
,
L.
,
Zhang
,
Z.
,
Guo
,
S.
,
Shang
,
H.
,
Li
,
Y.
, and
Liu
,
J.
,
2019
, “
Wearable Biofuel Cells Based on the Classification of Enzyme for High Power Outputs and Lifetimes
,”
Biosens. Bioelectron.
,
124–125
, pp.
40
52
. 10.1016/j.bios.2018.09.086
6.
Rasmussen
,
M.
,
Abdellaoui
,
S.
, and
Minteer
,
S. D.
,
2016
, “
Enzymatic Biofuel Cells: 30 Years of Critical Advancements
,”
Biosens. Bioelectron.
,
76
, pp.
91
102
. 10.1016/j.bios.2015.06.029
7.
de Souza
,
J. C. P.
,
Lost
,
R. M.
, and
Crespilho
,
F. N.
,
2016
, “
Nitrated Carbon Nanoblisters for High-Performance Glucose Dehydrogenase Bioanodes
,”
Biosens. Bioelectron.
,
77
, pp.
860
865
. 10.1016/j.bios.2015.08.069
8.
Wernert
,
V.
,
Lebouin
,
C.
,
Benoit
,
V.
,
Gadiou
,
R.
,
de Poulpiquet
,
A.
,
Lojou
,
E.
, and
Denoyel
,
R.
,
2018
, “
Direct Electron Transfer of Bilirubin Oxidase at a Carbon Flow-Through Electrode
,”
Electrochim. Acta
,
283
, pp.
88
96
. 10.1016/j.electacta.2018.06.136
9.
Hui
,
Y.
,
Ma
,
X.
,
Qu
,
F.
,
Chen
,
F.
, and
Chen
,
Y.
,
2017
, “
Three-Dimensional Nickel Foam Based Enzymatic Electrode and Its Glucose/O2 Biofuel Cell With High Power Density
,”
J. Electrochem. Soc.
,
164
(
13
), pp.
G112
G210
. 10.1149/2.0761713jes
10.
Aquino Neto
,
S.
,
Almeida
,
T. S.
,
Palma
,
L. M.
,
Minteer
,
S. D.
, and
de Andrade
,
A. R.
,
2014
, “
Hybrid Nanocatalysts Containing Enzymes and Metallic Nanoparticles for Ethanol/O2 Biofuel Cell
,”
J. Power Sources
,
259
, pp.
25
32
. 10.1016/j.jpowsour.2014.02.069
11.
Moore
,
C. M.
,
Akers
,
N. L.
,
Hill
,
A. D.
,
Johnson
,
Z. C.
, and
Minteer
,
S. D.
,
2004
, “
Improving the Environment for Immobilized Dehydrogenase Enzymes by Modifying Nafion With Tetraalkylammonium Bromides
,”
Biomacromolecules
,
5
(
4
), pp.
1241
1247
. 10.1021/bm0345256
12.
Kang
,
S.
,
Yoo
,
K. S.
,
Chung
,
Y.
, and
Kwon
,
Y.
,
2018
, “
Cathodic Biocatalyst Consisting of Laccase and Gold Nanoparticle for Improving Oxygen Reduction Reaction Rate and Enzymatic Biofuel Cell Performance
,”
J. Ind. Eng. Chem.
,
62
, pp.
329
332
. 10.1016/j.jiec.2018.01.011
13.
Ratautas
,
D.
,
Tetianec
,
L.
,
Marcinkeviciene
,
L.
,
Meskys
,
R.
, and
Kulys
,
J.
,
2017
, “
Bioanode With Alcohol Dehydrogenase Undergoing a Direct Electron Transfer on Functionalized Gold Nanoparticles for an Application in Biofuel Cells for Glycerol Conversion
,”
Biosens. Bioelectron.
,
98
, pp.
215
221
. 10.1016/j.bios.2017.06.048
14.
Boussema
,
F.
,
Gross
,
A. J.
,
Hmida
,
F.
,
Ayed
,
B.
,
Majdoub
,
H.
,
Cosnier
,
S.
,
Maaref
,
A.
, and
Holzinger
,
M.
,
2018
, “
Dawson-Type Polyoxometalate Nanoclusters Confined in a Carbon Nanotube Matrix as Efficient Redox Mediators for Enzymatic Glucose Biofuel Cell Anodes and Glucose Biosensors
,”
Biosens. Bioelectron.
,
109
, pp.
20
26
. 10.1016/j.bios.2018.02.060
15.
Ben Tahar
,
A.
,
Romdhane
,
A.
,
Lalaoui
,
N.
,
Reverdy-Bruas
,
N.
,
Le Goff
,
A.
,
Holzinger
,
M.
,
Cosnier
,
S.
,
Chaussy
,
D.
, and
Belgacem
,
N.
,
2018
, “
Carbon Nanotube-Based Flexible Biocathode for Enzymatic Biofuel Cells by Spray Coating
,”
J. Power Sources
,
408
, pp.
1
6
. 10.1016/j.jpowsour.2018.10.059
16.
Hui
,
Y.
,
Ma
,
X.
, and
Qu
,
F.
,
2019
, “
Flexible Glucose/Oxygen Enzymatic Biofuel Cells Based on Three-Dimensional Gold-Coated Nickel Foam
,”
J. Solid State Electrochem.
,
23
(
1
), pp.
169
178
. 10.1007/s10008-018-4099-4
17.
Huong Le
,
T. X.
,
Bechelany
,
M.
, and
Cretin
,
M.
,
2017
, “
Carbon Felt Based-Electrodes for Energy and Environmental Applications: A Review
,”
Carbon
,
122
, pp.
564
591
. 10.1016/j.carbon.2017.06.078
18.
Huong Le
,
T. X.
,
Bechelany
,
M.
,
Engel
,
A. B.
,
Cretin
,
M.
, and
Tingry
,
S.
,
2016
, “
Gold Particles Growth on Carbon Felt for Efficient Micropower Generation in a Hybrid Biofuel Cell
,”
Electrochim. Acta
,
219
, pp.
212
219
.
19.
Huang
,
K. J.
,
Wang
,
L.
,
Wang
,
H. B.
,
Gan
,
T.
,
Wu
,
Y. Y.
,
Li
,
J.
, and
Liu
,
Y. M.
,
2013
, “
Electrochemical Biosensor Based on Silver Nanoparticles-Polydopamine-Graphene Nanocomposite for Sensitive Determination of Adenine and Guanine
,”
Talanta
,
114
, pp.
43
48
. 10.1016/j.talanta.2013.04.017
20.
Hui
,
Y.
,
Ma
,
X.
,
Qu
,
F.
,
Chen
,
F.
,
Yu
,
J.
, and
Gao
,
Y.
,
2016
, “
Electropolymerization of Carboxymethyl-β-Cyclodextrin Based on Co-Electrodeposition Gold Nanoparticles Electrode: Electrocatalysis and Nonenzymatic Glucose Sensing
,”
J. Solid State Electrochem.
,
20
(
5
), pp.
1377
1389
. 10.1007/s10008-016-3119-5
21.
Borowiec
,
J.
,
Wang
,
R.
,
Zhu
,
L. H.
, and
Zhang
,
J. D.
,
2013
, “
Synthesis of Nitrogen-Doped Graphene Nanosheets Decorated With Gold Nanoparticles as an Improved Sensor for Electrochemical Determination of Chloramphenicol
,”
Electrochim. Acta
,
99
, pp.
138
144
. 10.1016/j.electacta.2013.03.092
22.
Hiratsuka
,
A.
,
Iwasa
,
H.
,
Uzawa
,
H.
,
Suzuki
,
A.
, and
Muguruma
,
H.
,
2019
, “
Direct-Electron-Transfer Bio-Nanoink With Single-Walled Carbon Nanotube and Aspergillus Terreusvar. Aureus Flavin Adenine Dinucleotide Glucose Dehydrogenase
,”
ACS Omega
,
4
(
3
), pp.
5776
5783
. 10.1021/acsomega.9b00060
23.
Filipiak
,
M. S.
,
Vetter
,
D.
,
Thodkar
,
K.
,
Gutierrez-Sanz
,
O.
,
Jonsson-Niedziolka
,
M.
, and
Tarasov
,
A.
,
2020
, “
Electron Transfer From FAD-Dependent Glucose Dehydrogenase to Single-Sheet Graphene Electrodes
,”
Electrochim. Acta
,
330
. 10.1016/j.electacta.2019.134998
24.
Gineityte
,
J.
,
Meskys
,
R.
,
Dagys
,
M.
, and
Ratautas
,
D.
,
2019
, “
Highly Efficient Direct Electron Transfer Bioanode Containing Glucose Dehydrogenase Operating in Human Blood
,”
J. Power Sources
,
441
. 10.1016/j.jpowsour.2019.227163
25.
Prasad
,
K. P.
,
Chen
,
Y.
, and
Chen
,
P.
,
2014
, “
Three-Dimensional Graphene-Carbon Nanotube Hybrid for High-Performance Enzymatic Biofuel Cells
,”
ACS Appl. Mater. Interfaces
,
6
(
5
), pp.
3387
3393
. 10.1021/am405432b
26.
Babadi
,
A. A.
,
Wan-Mohtar
,
W. A. A. Q. I.
,
Chang
,
J. S.
,
Ilham
,
Z.
,
Jamaludin
,
A. A.
,
Zamiri
,
G.
,
Akbarzadeh
,
O.
, and
Basirun
,
W. J.
,
2019
, “
High-Performance Enzymatic Biofuel Cell Based on Three-Dimensional Graphene
,”
Int. J. Hydrogen Energy
,
44
(
57
), pp.
30367
30374
. 10.1016/j.ijhydene.2019.09.185
27.
Gross
,
A. J.
,
Chen
,
X. H.
,
Giroud
,
F.
,
Abreu
,
C.
,
Le Goff
,
A.
,
Holzinger
,
M.
, and
Cosnier
,
S.
,
2017
, “
A High Power Buckypaper Biofuel Cell: Exploiting 1,10-Phenanthroline-5,6-Dione With FAD-Dependent Dehydrogenase for Catalytically-Powerful Glucose Oxidation
,”
ACS Catal.
,
7
(
7
), pp.
4408
4416
. 10.1021/acscatal.7b00738
You do not currently have access to this content.