Abstract

As one of the important components of the supercapacitor, electrode material has a significant influence on the electrochemical performance of the device. In this study, Ni2(NO3)2(OH)2 · 2H2O/(Co(NH3)5(N3))(N3)2 (NC) composite material was prepared by the microwave-assisted method. The effects of Al(NO3)3 contents on the morphology and structure of the composites were studied by scanning electron microscopy, X-ray diffraction, Raman spectrum, and laser particle size distribution analyzer. The capacitive properties of the composite were analyzed by cyclic voltammetry, constant current charge and discharge, and electrochemical impedance spectroscopy measurements. The results show that the Al(NO3)3 has a significant effect on the morphology and capacitance of NC. When the contents of Al(NO3)3 are 0, 5, 10, 15, and 20 wt%, the discharge capacities of NC, NCA-5, NCA-10, NCA-15, and NCA-20 samples obtained under 1 A/g current density are 1674, 1759, 2645, 1098, and 1321 F/g, respectively. At higher current densities of 4, 7, and 10 A/g, the discharge specific capacities reached 1350, 1064, and 894 F/g, indicating that the NCA-10 composite is a promising electrode material for supercapacitors.

References

1.
Zhang
,
Y.
,
Yao
,
Q.-Q.
,
Gao
,
H.-L.
,
Wang
,
L.-X.
,
Wang
,
L.-Z.
,
Zhang
,
A.-Q.
,
Song
,
Y.-H.
, and
Xia
,
T.-C.
,
2014
, “
Synthesis and Electrochemical Properties of Hollow-Porous MnO2-Graphene Micro-Nano Spheres for Supercapacitor Applications
,”
Powder Technol.
,
267
, pp.
268
272
. 10.1016/j.powtec.2014.07.040
2.
Kasonga
,
T. K.
,
Coetzee
,
M. A. A.
,
Kamika
,
I.
,
Ngole-Jeme
,
V. M.
, and
Benteke Momba
,
M. N.
,
2020
, “
Endocrine-Disruptive Chemicals as Contaminants of Emerging Concern in Wastewater and Surface Water: A Review
,”
J. Electrochem. Energy
,
277
(
1
), pp.
111485
. 10.1016/j.jenvman.2020.111485
3.
Muralee Gopi
,
C. V. V.
,
Vinodh
,
R.
,
Sambasivam
,
S.
,
Obaidat
,
I. M.
, and
Kim
,
H.-J.
,
2020
, “
Recent Progress of Advanced Energy Storage Materials for Flexible and Wearable Supercapacitor: From Design and Development to Applications
,”
J. Energy Storage
,
27
, p.
101035
. 10.1016/j.est.2019.101035
4.
Zhang
,
Y.
,
Chang
,
C.-R.
,
Jia
,
X.-D.
,
Huo
,
Q.-Y.
,
Gao
,
H.-L.
,
Yan
,
J.
,
Zhang
,
A.-Q.
,
Ru
,
Y.
,
Mei
,
H.-X.
,
Gao
,
K.-Z.
, and
Wang
,
L.-Z.
,
2020
, “
Morphology-Dependent NiMoO4/Carbon Composites for High Performance Supercapacitors
,”
Inorg. Chem. Commun.
,
111
, p.
107631
. 10.1016/j.inoche.2019.107631
5.
Fang
,
H.
,
Meng
,
F.
,
Yan
,
J.
,
Chen
,
G.-Y.
,
Zhang
,
L.
,
Wu
,
S.
,
Zhang
,
S.
,
Wang
,
L.
, and
Zhang
,
Y.
,
2019
, “
Fe3O4 Hard Templating to Assemble Highly Wrinkled Graphene Sheets Into Hierarchical Porous Film for Compact Capacitive Energy Storage
,”
RSC Adv.
,
9
(
35
), pp.
20107
20112
. 10.1039/C9RA02132A
6.
Fang
,
H.
,
Chen
,
G.
,
Wang
,
L.
,
Yan
,
J.
,
Zhang
,
L.
,
Gao
,
K.
,
Zhang
,
Y.
, and
Wang
,
L.
,
2018
, “
Facile Fabrication of Hierarchical Film Composed of Co(OH)2@Carbon Nanotube Core/Sheath Nanocables and Its Capacitive Performance
,”
RSC Adv.
,
8
(
67
), pp.
38550
38555
. 10.1039/C8RA07031H
7.
Zhang
,
Y.
,
Feng
,
H.
,
Wu
,
X.
,
Wang
,
L.
,
Zhang
,
A.
,
Xia
,
T.
,
Dong
,
H.
,
Li
,
X.
, and
Zhang
,
L.
,
2009
, “
Progress of Electrochemical Capacitor Electrode Materials: A Review
,”
Int. J. Hydrogen Energy
,
34
(
11
), pp.
4889
4899
. 10.1016/j.ijhydene.2009.04.005
8.
Xu
,
G.
,
Nie
,
P.
,
Dou
,
H.
,
Ding
,
B.
,
Li
,
L.
, and
Zhang
,
X.
,
2017
, “
Exploring Metal Organic Frameworks for Energy Storage in Batteries and Supercapacitors
,”
Mater. Today
,
20
(
4
), pp.
191
209
. 10.1016/j.mattod.2016.10.003
9.
Zhao
,
Y.
,
Chen
,
Z.
,
Xiong
,
D.-B.
,
Qiao
,
Y.
,
Tang
,
Y.
, and
Gao
,
F.
,
2016
, “
Hybridized Phosphate With Ultrathin Nanoslices and Single Crystal Microplatelets for High Performance Supercapacitors
,”
Sci. Rep.
,
6
(
1
), p.
17613
. 10.1038/srep17613
10.
Li
,
Q.
,
Li
,
Y. H.
,
Peng
,
H. R.
,
Cui
,
X.
,
Zhou
,
M.
,
Feng
,
K. Y.
, and
Xiao
,
P.
,
2016
, “
Layered NH4CoxNi1-xPO4 · H2O (0≦x≦1) Nanostructures Finely Tuned by Co/Ni Molar Ratios for Asymmetric Supercapacitor Electrodes
,”
J. Mater. Sci.
,
51
(
22
), pp.
9946
9957
. 10.1007/s10853-016-0151-x
11.
Shu
,
Y.
,
Li
,
B.
,
Chen
,
J.
,
Xu
,
Q.
,
Pang
,
H.
, and
Hu
,
X.
,
2018
, “
Facile Synthesis of Ultrathin Nickel–Cobalt Phosphate 2D Nanosheets With Enhanced Electrocatalytic Activity for Glucose Oxidation
,”
ACS Appl. Mater.
,
10
(
3
), pp.
2360
2367
. 10.1021/acsami.7b17005
12.
Wannasen
,
L.
,
Chanlek
,
N.
,
Maensiri
,
S.
, and
Swatsitang
,
E.
,
2019
, “
Composition Effect of Co/Ni on the Morphology and Electrochemical Properties of NH4Co1-xNixPO4 · H2O Nanocrystallites Prepared by a Facile Hydrothermal Method
,”
J. Mater. Sci.: Mater. Electron.
,
30
(
8
), pp.
7794
7807
. 10.1007/s10854-019-01096-4
13.
Liang
,
B.
,
Chen
,
Y.
,
He
,
J.
,
Chen
,
C.
,
Liu
,
W.
,
He
,
Y.
,
Liu
,
X.
,
Zhang
,
N.
, and
Roy
,
V. A. L.
,
2018
, “
Controllable Fabrication and Tuned Electrochemical Performance of Potassium Co–Ni Phosphate Microplates as Electrodes in Supercapacitors
,”
ACS Appl. Mater.
,
10
(
4
), pp.
3506
3514
. 10.1021/acsami.7b14552
14.
Mazloum-Ardakani
,
M.
,
Sabaghian
,
F.
,
Yavari
,
M.
,
Ebady
,
A.
, and
Sahraie
,
N.
,
2020
, “
Enhance the Performance of Iron Oxide Nanoparticles in Supercapacitor Applications Through Internal Contact of α-Fe2O3@CeO2 Core-Shell
,”
J. Alloys Compd.
,
819
, p.
152949
. 10.1016/j.jallcom.2019.152949
15.
Ma
,
F.
,
Dai
,
X.
,
Jin
,
J.
,
Tie
,
N.
, and
Dai
,
Y.
,
2020
, “
Hierarchical Core-Shell Hollow CoMoS4@Ni–Co–S Nanotubes Hybrid Arrays as Advanced Electrode Material for Supercapacitors
,”
Electrochim. Acta
,
331
, p.
135459
. 10.1016/j.electacta.2019.135459
16.
Wang
,
M.
,
Jin
,
F.
,
Zhang
,
X.
,
Wang
,
J.
,
Huang
,
S.
,
Zhang
,
X.
,
Mu
,
S.
,
Zhao
,
Y.
, and
Zhao
,
Y.
,
2017
, “
Multihierarchical Structure of Hybridized Phosphates Anchored on Reduced Graphene Oxide for High Power Hybrid Energy Storage Devices
,”
ACS Sustain. Chem. Eng.
,
5
(
7
), pp.
5679
5685
. 10.1021/acssuschemeng.7b00131
17.
Zhang
,
Y.
,
Gui
,
Y.
,
Wu
,
X.
,
Feng
,
H.
,
Zhang
,
A.
,
Wang
,
L.
, and
Xia
,
T.
,
2009
, “
Preparation of Nanostructures NiO and Their Electrochemical Capacitive Behaviors
,”
Int. J. Hydrogen Energy
,
34
(
5
), pp.
2467
2470
. 10.1016/j.ijhydene.2008.12.078
18.
Ma
,
F.
,
Dai
,
X.
,
Jin
,
J.
,
Tie
,
N.
, and
Dai
,
Y.
,
2020
, “
Hierarchical Core-Shell Hollow CoMoS4@Ni–Co–S Nanotubes Hybrid Arrays as Advanced Electrode Material for Supercapacitors
,”
Electrochim. Acta
,
331
, p.
135459
. 10.1016/j.electacta.2019.135459
19.
Bhagwan
,
J.
,
Khaja Hussain
,
S.
, and
Yu
,
J. S.
,
2020
, “
Aqueous Asymmetric Supercapacitors Based on ZnCo2O4 Nanoparticles via Facile Combustion Method
,”
J. Alloys Compd.
,
815
, p.
152456
. 10.1016/j.jallcom.2019.152456
20.
Nagaraj
,
R.
,
Aruchamy
,
K.
,
Halanur
,
M. M
,
Maalige
,
R. N.
,
Mondal
,
D.
,
Nataraj
,
S. K.
, and
Ghosh
,
D.
,
2019
, “
Boosting the Electrochemical Performance of Polyaniline Based All-Solid-State Flexible Supercapacitor Using NiFe2O4 as Adjuvant
,”
J. Electroanal. Chem.
,
851
, p.
113482
. 10.1016/j.jelechem.2019.113482
21.
Wang
,
P.
,
Wang
,
S.
,
Zhang
,
X.
,
Wang
,
H.
,
Duan
,
W.
,
Han
,
H.
, and
Fan
,
X.
,
2020
, “
Rational Construction of CoO/CoF2 Coating on Burnt-Pot Inspired 2D CNs as the Battery-Like Electrode for Supercapacitors
,”
J. Alloys Compd.
,
819
, p.
153374
. 10.1016/j.jallcom.2019.153374
22.
Tang
,
X.
,
Lui
,
Y. H.
,
Zhang
,
B.
, and
Hu
,
S.
,
2020
, “
Venus Flytrap-Like Hierarchical NiCoMn–O@NiMoO4@C Nanosheet Arrays as Free-Standing Core-Shell Electrode Material for Hybrid Supercapacitor With High Electrochemical Performance
,”
J. Power Sources
,
477
, p.
228977
. 10.1016/j.jpowsour.2020.228977
23.
Diao
,
K. K.
,
Xiao
,
Z.
, and
Zhao
,
Y. Y.
,
2015
, “
Specific Surface Areas of Porous Cu Manufactured by Lost Carbonate Sintering: Measurements by Quantitative Stereology and Cyclic Voltammetry
,”
Mater. Chem. Phys.
,
162
, pp.
571
579
. 10.1016/j.matchemphys.2015.06.031
24.
Zhang
,
C.
,
Geng
,
X.
,
Tang
,
S.
,
Deng
,
M.
, and
Du
,
Y.
,
2017
, “
NiCo2O4@rGO Hybrid Nanostructures on Ni Foam as High-Performance Supercapacitor Electrodes
,”
J. Mater. Chem. A
,
5
(
12
), pp.
5912
5919
. 10.1039/C7TA00571G
25.
Yang
,
S.
,
Zhao
,
F.
,
Li
,
X.
,
Cao
,
B.
,
Mo
,
Y.
,
Chen
,
D.
, and
Chen
,
Y.
,
2019
, “
Electrode Structural Changes and Their Effects on Capacitance Performance During Preparation and Charge-Discharge Processes
,”
J. Energy Storage
,
24
, p.
100799
. 10.1016/j.est.2019.100799
26.
Zhang
,
Y.
,
Gao
,
H.-L.
,
Jia
,
X.-D.
,
Wang
,
S.-W.
,
Yan
,
J.
,
Luo
,
H.-W.
,
Gao
,
K.-Z.
,
Fang
,
H.
,
Zhang
,
A.-Q.
, and
Wang
,
L.-Z.
,
2018
, “
NiMoO4 Nanorods Supported on Nickel Foam for High-Performance Supercapacitor Electrode Materials
,”
J. Renew. Sustain. Energy
,
10
(
5
), pp.
054101
054110
. 10.1063/1.5032271
27.
Ma
,
Z.
,
Sun
,
Z.
,
Jiang
,
H.
,
Li
,
F.
,
Wang
,
Q.
, and
Qu
,
F.
,
2020
, “
Nanoporous Electrospun NiCo2S4 Embedded in Carbon Fiber as an Excellent Electrode for High-Rate Supercapacitors
,”
Appl. Surf. Sci.
,
533
, p.
147521
. 10.1016/j.apsusc.2020.147521
28.
Chen
,
K.
, and
Xue
,
D.
,
2015
, “
Rare Earth and Transitional Metal Colloidal Supercapacitors
,”
Sci. China Technol. Sci.
,
58
(
11
), pp.
1768
1778
. 10.1007/s11431-015-5915-z
29.
Daneshvar
,
S.
, and
Arvand
,
M.
,
2019
, “
In-Situ Growth of Hierarchical Ni–Co LDH/CoMoO4 Nanosheets Arrays on Ni Foam for Pseudocapacitors With Robust Cycle Stability
,”
J. Alloys Compd.
,
815
, p.
152421
. 10.1016/j.jallcom.2019.152421
30.
Yin
,
Z.
,
Chen
,
Y.
,
Zhao
,
Y.
,
Li
,
C.
,
Zhu
,
C.
, and
Zhang
,
X.
,
2015
, “
Hierarchical Nanosheet-Based CoMoO4–NiMoO4 Nanotubes for Applications in Asymmetric Supercapacitors and the Oxygen Evolution Reaction
,”
J. Mater. Chem. A
,
3
(
45
), pp.
22750
22758
. 10.1039/C5TA05678K
31.
Nti
,
F.
,
Anang
,
D. A.
, and
Han
,
J. I.
,
2018
, “
Facilely Synthesized NiMoO4/CoMoO4 Nanorods as Electrode Material for High Performance Supercapacitor
,”
J. Alloys Compd.
,
742
, pp.
342
350
. 10.1016/j.jallcom.2018.01.289
32.
Fang
,
H.
,
Zou
,
W.
,
Yan
,
J.
,
Xing
,
Y.
, and
Zhang
,
S.
,
2018
, “
Facile Fabrication of Fe2O3 Nanoparticles Anchored on Carbon Nanotubes as High-Performance Anode for Lithium-Ion Batteries
,”
ChemElectroChem
,
5
(
17
), pp.
2458
2463
. 10.1002/celc.201800441
33.
Wang
,
F.
,
Ma
,
J.
,
Zhou
,
K.
, and
Li
,
X.
,
2020
, “
MoS2/Corncob-Derived Activated Carbon for Supercapacitor Application
,”
Mater. Chem. Phys.
,
244
, p.
122215
. 10.1016/j.matchemphys.2019.122215
34.
Wang
,
Y.
,
Ma
,
X.
,
Li
,
S.
,
Sun
,
J.
,
Zhang
,
Y.
,
Chen
,
H.
, and
Xu
,
C.
,
2020
, “
Facile Solvothermal Synthesis of Novel MgCo2O4 Twinned-Hemispheres for High Performance Asymmetric Supercapacitors
,”
J. Alloys Compd.
,
818
, p.
152905
. 10.1016/j.jallcom.2019.152905
35.
Zhang
,
Y.
,
Chang
,
C.-R.
,
Jia
,
X.-D.
,
Cao
,
Y.
,
Yan
,
J.
,
Luo
,
H.-W.
,
Gao
,
H.-L.
,
Ru
,
Y.
,
Mei
,
H.-X.
,
Zhang
,
A.-Q.
,
Gao
,
K.-Z.
, and
Wang
,
L.-Z.
,
2020
, “
Influence of Metallic Oxide on the Morphology and Enhanced Supercapacitive Performance of NiMoO4 Electrode Material
,”
Inorg. Chem. Commun.
,
112
, p.
107697
. 10.1016/j.inoche.2019.107697
36.
Guo
,
X.
,
Li
,
M.
,
Liu
,
Y.
,
Huang
,
Y.
,
Geng
,
S.
,
Yang
,
W.
, and
Yu
,
Y.
,
2020
, “
Hierarchical Core-Shell Electrode With NiWO4 Nanoparticles Wrapped MnCo2O4 Nanowire Arrays on Ni Foam for High-Performance Asymmetric Supercapacitors
,”
J. Colloid Interface Sci.
,
563
, pp.
405
413
. 10.1016/j.jcis.2019.12.076
37.
Wan
,
L.
,
Liu
,
J. X.
,
Li
,
X.
,
Zhang
,
Y.
,
Chen
,
J.
,
Du
,
C.
, and
Xie
,
M. J.
,
2020
, “
Fabrication of Core-Shell NiMoO4@MoS2 Nanorods for High-Performance Asymmetric Hybrid Supercapacitors
,”
Int. J. Hydrogen Energy
,
45
(
7
), pp.
4521
4533
. 10.1016/j.ijhydene.2019.12.057
38.
Liu
,
J.
,
Wang
,
Y.
,
Hu
,
R.
,
Munir
,
H. A.
, and
Liu
,
H.
,
2020
, “
High-Performance Supercapacitor Electrode Based on 3D Rose-Like β-Ni(OH)2/rGO Nanohybrid
,”
J. Phys. Chem. Solids
,
138
, p.
109297
. doi.org/10.1016/j.jpcs.2019.109297
39.
Zhang
,
Y.
,
Li
,
G.-Y.
,
Lv
,
Y.
,
Wang
,
L.-Z.
,
Zhang
,
A.-Q.
,
Song
,
Y.-H.
, and
Huang
,
B.-L.
,
2011
, “
Electrochemical Investigation of MnO2 Electrode Material for Supercapacitors
,”
Int. J. Hydrogen Energy
,
36
(
18
), pp.
11760
11766
. 10.1016/j.ijhydene.2011.06.020
40.
Zhu
,
F.
,
Liu
,
W.
,
Liu
,
Y.
, and
Shi
,
W.
,
2020
, “
Construction of Porous Interface on CNTs@NiCo-LDH Core-Shell Nanotube Arrays for Supercapacitor Applications
,”
Chem. Eng. J.
,
383
, p.
123150
. 10.1016/j.cej.2019.123150
41.
Chen
,
Z.
,
Li
,
Y.
,
Hu
,
Z.
,
Miao
,
Y.
,
Sui
,
Y.
,
Qi
,
J.
,
Wei
,
F.
,
Ren
,
Y.
,
Zhan
,
Z.
,
Liu
,
J.
,
Sun
,
Z.
,
Zhou
,
M.
, and
Meng
,
D.
,
2020
, “
In-Situ Growth of Core-Shell NiCo2O4@Ni-Co Layered Double Hydroxides for All-Solid-State Flexible Hybrid Supercapacitor
,”
Colloids Surf. A
,
607
, p.
125417
. 10.1016/j.colsurfa.2020.125417
42.
Xu
,
L.
,
Wang
,
S.
,
Zhang
,
X.
,
He
,
T.
,
Lu
,
F.
,
Li
,
H.
, and
Ye
,
J.
,
2018
, “
A Facile Method of Preparing LiMnPO4/Reduced Graphene Oxide Aerogel as Cathodic Material for Aqueous Lithium-Ion Hybrid Supercapacitors
,”
Appl. Surf. Sci.
,
428
, pp.
977
985
. 10.1016/j.apsusc.2017.09.247
43.
Tao
,
L.
,
Li
,
J.
,
Zhou
,
Q.
,
Zhu
,
H.
,
Hu
,
G.
, and
Huang
,
J.
,
2018
, “
Composition, Microstructure and Performance of Cobalt Nickel Phosphate as Advanced Battery-Type Capacitive Material
,”
J. Alloys Compd.
,
767
, pp.
789
796
. 10.1016/j.jallcom.2018.07.157
44.
Sun
,
Y. H.
,
Zhao
,
J. C.
,
Zhou
,
H. H.
,
Tang
,
B. H. J.
,
Gu
,
Y. Q.
,
Tang
,
A. M.
,
Liao
,
C. M.
, and
Xu
,
J. L.
,
2011
, “
The Effect of Support on the Electrochemical Performance of Composite Electrode Materials for Supercapacitor
,”
Adv. Mater. Res.
,
239–242
, pp.
1010
1013
. www.scientific.net/AMR.239-242.1010
45.
Feng
,
J.
,
Tang
,
B.
,
Zhao
,
J.
,
Liu
,
P.
, and
Xu
,
J.
,
2011
, “
Preparation of Ni/Mn Compounds/Ordered Mesoporous Carbon Composite for Use in an Electrochemical Supercapacitor
,”
J. Appl. Electrochem.
,
41
(
8
), pp.
901
907
. 10.1007/s10800-011-0315-y
46.
Gabrovska
,
M.
,
Kardjieva
,
R.
,
Angelov
,
V.
,
Crisan
,
D.
,
Munteanu
,
G.
, and
Védrine
,
J.
,
2007
, “
Mg-Al and Mg-In Oxide Compounds as Catalyst Components for the Oxidative Dehydrogenation of Propane. Part I—Preparation and Characterization of the As-Synthesized Materials
,”
Rev. Roum. Chim.
,
52
(
5
), pp.
521
525
.
47.
Mohd Abdah
,
M. A. A.
,
Azman
,
N. H. N.
,
Kulandaivalu
,
S.
, and
Sulaiman
,
Y.
,
2020
, “
Review of the Use of Transition-Metal-Oxide and Conducting Polymer-Based Fibres for High-Performance Supercapacitors
,”
Mater. Des.
,
186
, p.
108199
. 10.1016/j.matdes.2019.108199
48.
Da Silva
,
L. M.
,
Cesar
,
R.
,
Moreira
,
C. M. R.
,
Santos
,
J. H. M.
,
De Souza
,
L. G.
,
Pires
,
B. M.
,
Vicentini
,
R.
,
Nunes
,
W.
, and
Zanin
,
H.
,
2020
, “
Reviewing the Fundamentals of Supercapacitors and the Difficulties Involving the Analysis of the Electrochemical Findings Obtained for Porous Electrode Materials
,”
Energy Storage Mater.
,
27
, pp.
555
590
. 10.1016/j.ensm.2019.12.015
49.
Zhang
,
Y.
,
Yao
,
Q.-Q.
,
Gao
,
H.-L.
,
Zhang
,
L.-S.
,
Wang
,
L.-Z.
,
Zhang
,
A.-Q.
,
Song
,
Y.-H.
, and
Wang
,
L.-X.
,
2015
, “
Synthesis and Electrochemical Performance of MnO2/BC Composite as Active Materials for Supercapacitors
,”
J. Anal. Appl. Pyrolysis
,
111
, pp.
233
237
. 10.1016/j.jaap.2014.11.002
50.
Chance Carter
,
J.
,
Khulbe
,
P. K.
,
Gray
,
J.
,
Van Zee
,
J. W.
, and
Michael Angel
,
S.
,
2004
, “
Raman Spectroscopic Evidence Supporting the Existence of Ni4(OH)44+ in Aqueous, Ni(NO3)2 Solutions
,”
Anal. Chim. Acta
,
514
(
2
), pp.
241
245
. 10.1016/j.aca.2004.03.051
51.
Song
,
D.
,
Kang
,
Y. S.
, and
Kang
,
S. W.
,
2015
, “
Highly Permeable and Stabilized Olefin Transport Membranes Based on a Poly(Ethylene Oxide) Matrix and Al(NO3)3
,”
J. Membr. Sci.
,
474
, pp.
273
276
. 10.1016/j.memsci.2014.09.050
52.
Sung Park
,
Y.
,
Soo Kang
,
Y.
, and
Wook Kang
,
S.
,
2015
, “
Cost-Effective Facilitated Olefin Transport Membranes Consisting of Polymer/AgCF3SO3/Al(NO3)3 With Long-Term Stability
,”
J. Membr. Sci.
,
495
, pp.
61
64
. 10.1016/j.memsci.2015.07.061
You do not currently have access to this content.