Abstract

Commercialization of energy-dense lithium metal batteries relies on stable and uniform plating and stripping on the lithium metal anode. In electrochemical-mechanical modeling of solid-state batteries, there is a lack of consideration of specific mechanical properties of battery-grade lithium metal. Defining these characteristics is crucial for understanding how lithium ions plate on the lithium metal anode, how plating and stripping affect deformation of the anode and its interfacing material, and whether dendrites are suppressed. Recent experiments show that the dominant mode of deformation of lithium metal is creep. This study measures the time and temperature-dependent mechanics of two thicknesses of commercial lithium anodes inside an industrial dry room, where battery cells are manufactured at high volume. Furthermore, a directional study examines the anisotropic microstructure of 100 µm thick lithium anodes and its effect on bulk creep mechanics. It is shown that these lithium anodes undergo plastic creep as soon as a coin cell is manufactured at a pressure of 0.30 MPa, and achieving thinner lithium foils, a critical goal for solid-state lithium batteries, is correlated to anisotropy in both lithium’s microstructure and mechanical properties.

References

1.
Cho
,
S.-J.
,
Yu
,
D.-E.
,
Pollard
,
T. P.
,
Moon
,
H.
,
Jang
,
M.
,
Borodin
,
O.
, and
Lee
,
S.-Y.
,
2020
, “
Nonflammable Lithium Metal Full Cells With Ultra-High Energy Density Based on Coordinated Carbonate Electrolytes
,”
iScience
,
23
(
2
), p.
100844
.
2.
Albertus
,
P.
,
Babinec
,
S.
,
Litzelman
,
S.
, and
Newman
,
A.
,
2018
, “
Status and Challenges in Enabling the Lithium Metal Electrode for High-Energy and Low-Cost Rechargeable Batteries
,”
Nat. Energy
,
3
(
1
), pp.
16
21
.
3.
LePage
,
W. S.
,
Chen
,
Y.
,
Kazyak
,
E.
,
Chen
,
K.-H.
,
Sanchez
,
A. J.
,
Poli
,
A.
,
Arruda
,
E. M.
,
Thouless
,
M. D.
, and
Dasgupta
,
N. P.
,
2019
, “
Lithium Mechanics: Roles of Strain Rate and Temperature and Implications for Lithium Metal Batteries
,”
J. Electrochem. Soc.
,
166
(
2
), pp.
A89
A97
.
4.
Dienemann
,
L. L.
,
Saigal
,
A.
, and
Zimmerman
,
M. A.
,
2020
, “
Elastic-Viscoplastic Mechanics of Lithium in a Standard Dry Room
,”
ASME 2020 International Mechanical Engineering Congress and Exposition
,
Virtual
,
Nov. 16–19
.
5.
Monroe
,
C.
, and
Newman
,
J.
,
2005
, “
The Impact of Elastic Deformation on Deposition Kinetics at Lithium/Polymer Interfaces
,”
J. Electrochem. Soc.
,
152
(
2
), pp.
A396
A404
.
6.
Zhang
,
F.
,
Huang
,
Q.-A.
,
Tang
,
Z.
,
Li
,
A.
,
Shao
,
Q.
,
Zhang
,
L.
,
Li
,
X.
, and
Zhang
,
J.
,
2020
, “
A Review of Mechanics-Related Material Damages in All-Solid-State Batteries: Mechanisms, Performance Impacts and Mitigation Strategies
,”
Nano Energy
,
70
(
1
), p.
104545
.
7.
Khurana
,
R.
,
Schaefer
,
J. L.
,
Archer
,
L. A.
, and
Coates
,
G. W.
,
2014
, “
Suppression of Lithium Dendrite Growth Using Cross-Linked Polyethylene/Poly(Ethylene Oxide) Electrolytes: A New Approach for Practical Lithium-Metal Polymer Batteries
,”
J. Am. Chem. Soc.
,
136
(
20
), pp.
7395
7402
.
8.
Masias
,
A.
,
Felten
,
N.
,
Garcia-Mendez
,
R.
,
Wolfenstine
,
J.
, and
Sakamoto
,
J.
,
2019
, “
Elastic, Plastic, and Creep Mechanical Properties of Lithium Metal
,”
J. Mater. Sci.
,
54
(
3
), pp.
2585
2600
.
9.
Anand
,
L.
, and
Narayan
,
S.
,
2019
, “
An Elastic-Viscoplastic Model for Lithium
,”
J. Electrochem. Soc.
,
166
(
6
), pp.
A1092
A1095
.
10.
Narayan
,
S.
, and
Anand
,
L.
,
2018
, “
A Large Deformation Elastic–Viscoplastic Model for Lithium
,”
Extreme Mech. Lett.
,
24
(
1
), pp.
21
29
.
11.
Wang
,
Y.
, and
Cheng
,
Y.-T.
,
2017
, “
A Nanoindentation Study of the Viscoplastic Behavior of Pure Lithium
,”
Scr. Mater.
,
130
(
1
), pp.
191
195
.
12.
Barai
,
P.
,
Higa
,
K.
, and
Srinivasan
,
V.
,
2017
, “
Lithium Dendrite Growth Mechanisms in Polymer Electrolytes and Prevention Strategies
,”
Phys. Chem. Chem. Phys.
,
19
(
31
), pp.
20493
20505
.
13.
Zhao
,
Y.
,
Stein
,
P.
,
Bai
,
Y.
,
Al-Siraj
,
M.
,
Yang
,
Y.
, and
Xu
,
B.-X.
,
2019
, “
A Review on Modeling of Electro-Chemo-Mechanics in Lithium-Ion Batteries
,”
J. Power Sources
,
413
(
1
), pp.
259
283
.
14.
Zhang
,
X.
,
Wang
,
Q. J.
,
Harrison
,
K. L.
,
Roberts
,
S. A.
, and
Harris
,
S. J.
,
2020
, “
Pressure-Driven Interface Evolution in Solid-State Lithium Metal Batteries
,”
Cell Rep. Phys. Sci.
,
1
(
2
), p.
100012
.
15.
Sedlatschek
,
T.
,
Lian
,
J.
,
Li
,
W.
,
Jiang
,
M.
,
Wierzbicki
,
T.
,
Bazant
,
M. Z.
, and
Zhu
,
J.
,
2021
, “
Large-Deformation Plasticity and Fracture Behavior of Pure Lithium Under Various Stress States
,”
Acta Materialia
,
208
(
1
), p.
116730
.
16.
Dienemann
,
L. L.
,
Saigal
,
A.
, and
Zimmerman
,
M. A.
,
2019
, “
Low-Cost Measurement Technique of Poisson’s Ratio of Thin, Solvent-Sensitive Polymer Membranes
,”
ASME 2019 International Mechanical Engineering Congress and Exposition
,
Salt Lake City, UT
,
Nov. 11–14
.
17.
Sherby
,
O. D.
,
Klundt
,
R. H.
, and
Miller
,
A. K.
,
1977
, “
Flow Stress, Subgrain Size, and Subgrain Stability at Elevated Temperature
,”
Metall. Mater. Trans. A
,
8
(
6
), pp.
843
850
.
18.
Shi
,
F.
,
Pei
,
A.
,
Vailionis
,
A.
,
Xie
,
J.
,
Liu
,
B.
,
Zhao
,
J.
,
Gong
,
Y.
, and
Cui
,
Y.
,
2017
, “
Strong Texturing of Lithium Metal in Batteries
,”
Proc Natl Acad Sci
,
114
(
46
), pp.
12138
12143
.
19.
Ding
,
S.
,
Fairgrieve-Park
,
L.
,
Sendetskyi
,
O.
, and
Fleischauer
,
M. D.
,
2021
, “
Compressive Creep Deformation of Lithium Foil at Varied Cell Conditions
,”
J. Power Sources
,
488
(
1
), p.
229404
.
20.
Kalpakjian
,
S.
, and
Schmid
,
S. R.
,
2008
,
Manufacturing Processes for Engineering Materials
, 6th ed.,
Pearson Education, Inc.
,
London, UK
.
21.
Sullivan
,
A.
,
Saigal
,
A.
, and
Zimmerman
,
M. A.
,
2019
, “
Practical Simulation and Experimental Measurement of Liquid Crystal Polymer Directionality During Injection Molding
,”
Polym. Eng. Sci.
,
59
(
s2
), pp.
E414
E424
.
22.
Thorsen
,
P. A.
,
1998
,
The Influence of the Grain Boundary Structure on Diffusional Creep
,
Risø National Laboratory
,
Roskilde, Denmark
.
23.
Albemarle
,
2016
, “
Lithium Metal
,”
Product No. 401513 Datasheet
.
24.
Aesar
,
A.
,
2021
, “
Lithium Foil, 0.75 mm (0.03 in) Thick x 19 mm (0.75 in.) Wide, 99.9% (Metals Basis)
,”
Product No. 10769 Datasheet
.
25.
Steiger
,
J.
,
Kramer
,
D.
, and
Mönig
,
R.
,
2014
, “
Microscopic Observations of the Formation, Growth and Shrinkage of Lithium Moss During Electrodeposition and Dissolution
,”
Electrochim. Acta
,
136
(
1
), pp.
529
536
.
26.
Nagy
,
K. S.
, and
Siegel
,
D. J.
,
2020
, “
Anisotropic Elastic Properties of Battery Anodes
,”
J. Electrochem. Soc.
,
167
(
11
), p.
110550
.
27.
Becking
,
J.
,
Gröbmeyer
,
A.
,
Kolek
,
M.
,
Rodehorst
,
U.
,
Schulze
,
S.
,
Winter
,
M.
,
Bieker
,
P.
, and
Stan
,
M. C.
,
2017
, “
Lithium-Metal Foil Surface Modification: An Effective Method to Improve the Cycling Performance of Lithium-Metal Batteries
,”
Adv. Mater. Interfaces
,
4
(
16
), p.
1700166
.
28.
Goyal
,
P.
, and
Monroe
,
C. W.
,
2017
, “
New Foundations of Newman’s Theory for Solid Electrolytes: Thermodynamics and Transient Balances
,”
J. Electrochem. Soc.
,
164
(
11
), pp.
E3647
E3660
.
29.
Zhang
,
X.
,
Wang
,
Q. J.
,
Harrison
,
K. L.
,
Jungjohann
,
K.
,
Boyce
,
B. L.
,
Roberts
,
S. A.
,
Attia
,
P. M.
, and
Harris
,
S. J.
,
2019
, “
Rethinking How External Pressure Can Suppress Dendrites in Lithium Metal Batteries
,”
J. Electrochem. Soc.
,
166
(
15
), pp.
A3639
A3652
.
You do not currently have access to this content.