Abstract

High-capacity electrochemical alloying materials, such as tin and tin-based alloys, present an opportunity for the advancement of lithium-ion batteries. However, the destructive effects of volumetric expansion must be mitigated in order to sustain this high capacity during extended cycling. One way to mitigate these effects is by alloying Sn with more malleable metals to accommodate the strain related to severe volumetric expansion. Ex situ X-ray microtomography data of cycled Cu6Sn5 pellets were used to quantify the microstructural changes that occur during lithiation and delithiation. The microtomography data were segmented into three distinct phases to evaluate phase size distributions, specific surface area, and tortuosity. Electrodes lithiated and then delithiated showed the most substantial reduction in overall phase sizes. This suggests that full lithiation of the Sn followed by partial delithiation of the Li4.4Sn to Li2CuSn can cause substantial microstructural changes related to volume expansion on lithiation and structural collapse upon delithiation. When considering other microstructural characteristics, this subset of the electrodes analyzed showed the highest tortuosity values. These results show that in addition to the mechanical degradation of the electrodes, excessive volume expansion can also influence transport networks in the active material and supporting phases of the electrode. While based on studies of the active–inactive alloy Cu6Sn5 for lithium-ion battery applications, the insights obtained are expected to be applicable to other alloy electrodes and battery chemistries.

References

1.
Park
,
C. M.
,
Kim
,
J. H.
,
Kim
,
H.
, and
Sohn
,
H. J.
,
2010
, “
Li-Alloy Based Anode Materials for Li Secondary Batteries
,”
Chem. Soc. Rev.
,
39
(
8
), p.
3115
.
2.
Shin
,
H.-C.
, and
Liu
,
M.
,
2005
, “
Three-Dimensional Porous Copper-Tin Alloy Electrodes for Rechargeable Lithium Batteries
,”
Adv. Funct. Mater.
,
15
(
4
), pp.
582
586
.
3.
Yang
,
J.
,
Wachtler
,
M.
,
Winter
,
M.
, and
Besenhard
,
J. O.
,
1999
, “
Sub-Microcrystalline Sn and Sn-SnSb Powders as Lithium Storage Materials for Lithium-Ion Batteries
,”
Electrochem. Solid-State Lett.
,
2
(
4
), pp.
161
163
.
4.
Winter
,
M.
,
Besenhard
,
J. O.
,
Spahr
,
M. E.
, and
Novak
,
P.
,
1998
, “
Insertion Electrode Materials for Rechargeable Lithium Batteries
,”
Adv. Mater.
,
10
(
10
), pp.
725
763
.
5.
Huggins
,
R. A.
,
2002
, “
Alternative Materials for Negative Electrodes in Lithium Systems
,”
Solid State Ionics
,
152
, pp.
61
68
.
6.
Huggins
,
R. A.
,
1999
, “
Lithium Alloy Negative Electrodes
,”
J. Power Sources
,
81
, pp.
13
19
.
7.
Chan
,
C. K.
,
Peng
,
H. L.
,
Liu
,
G.
,
McIlwrath
,
K.
,
Zhang
,
X. F.
,
Huggins
,
R. A.
, and
Cui
,
Y.
,
2008
, “
High-Performance Lithium Battery Anodes Using Silicon Nanowires
,”
Nat. Nanotechnol.
,
3
(
1
), pp.
31
35
.
8.
Cui
,
L. F.
,
Ruffo
,
R.
,
Chan
,
C. K.
,
Peng
,
H. L.
, and
Cui
,
Y.
,
2009
, “
Crystalline-Amorphous Core-Shell Silicon Nanowires for High Capacity and High Current Battery Electrodes
,”
Nano Lett.
,
9
(
1
), pp.
491
495
.
9.
Sethuraman
,
V. A.
,
Chon
,
M. J.
,
Shimshak
,
M.
,
Srinivasan
,
V.
, and
Guduru
,
P. R.
,
2010
, “
In Situ Measurements of Stress Evolution in Silicon Thin Films During Electrochemical Lithiation and Delithiation
,”
J. Power Sources
,
195
(
15
), pp.
5062
5066
.
10.
Choi
,
N. S.
,
Yao
,
Y.
,
Cui
,
Y.
, and
Cho
,
J.
,
2011
, “
One Dimensional Si/Sn—Based Nanowires and Nanotubes for Lithium-Ion Energy Storage Materials
,”
J. Mater. Chem.
,
21
(
27
), pp.
9825
9840
.
11.
Lee
,
S. W.
,
McDowell
,
M. T.
,
Choi
,
J. W.
, and
Cui
,
Y.
,
2011
, “
Anomalous Shape Changes of Silicon Nanopillars by Electrochemical Lithiation
,”
Nano Lett.
,
11
(
7
), pp.
3034
3039
.
12.
Ryu
,
I.
,
Choi
,
J. W.
,
Cui
,
Y.
, and
Nix
,
W. D.
,
2011
, “
Size-Dependent Fracture of Si Nanowire Battery Anodes
,”
J. Mech. Phys. Solids
,
59
(
9
), pp.
1717
1730
.
13.
Yao
,
Y.
,
McDowell
,
M. T.
,
Ryu
,
I.
,
Wu
,
H.
,
Liu
,
N. A.
,
Hu
,
L. B.
,
Nix
,
W. D.
, and
Cui
,
Y.
,
2011
, “
Interconnected Silicon Hollow Nanospheres for Lithium-Ion Battery Anodes With Long Cycle Life
,”
Nano Lett.
,
11
(
7
), pp.
2949
2954
.
14.
Lee
,
S. W.
,
McDowell
,
M. T.
,
Berla
,
L. A.
,
Nix
,
W. D.
, and
Cui
,
Y.
,
2012
, “
Fracture of Crystalline Silicon Nanopillars During Electrochemical Lithium Insertion
,”
Proc. Natl. Acad. Sci. U. S. A.
,
109
(
11
), pp.
4080
4085
.
15.
Qi
,
Y.
,
Xu
,
Q. C.
, and
Van Der Ven
,
A.
,
2012
, “
Chemically Induced Crack Instability When Electrodes Fracture
,”
J. Electrochem. Soc.
,
159
(
11
), pp.
A1838
A1843
.
16.
Todd
,
A. D. W.
,
Mar
,
R. E.
, and
Dahn
,
J. R.
,
2007
, “
Tin-Transition Metal-Carbon Systems for Lithium-Ion Battery Negative Electrodes
,”
J. Electrochem. Soc.
,
154
(
6
), pp.
A597
A604
.
17.
Todd
,
A. D. W.
,
Mar
,
R. E.
, and
Dahn
,
J. R.
,
2006
, “
Combinatorial Study of Tin-Transition Metal Alloys as Negative Electrodes for Lithium-Ion Batteries
,”
J. Electrochem. Soc.
,
153
(
10
), pp.
A1998
A2005
.
18.
Deshpande
,
R. D.
,
Li
,
J. C.
,
Cheng
,
Y. T.
, and
Verbrugge
,
M. W.
,
2011
, “
Liquid Metal Alloys as Self-healing Negative Electrodes for Lithium Ion Batteries
,”
J. Electrochem. Soc.
,
158
(
8
), pp.
A845
A849
.
19.
Brushett
,
F. R.
,
Trahey
,
L.
,
Xiao
,
X.
, and
Vaughey
,
J. T.
,
2014
, “
Full-Field Synchrotron Tomography of Nongraphitic Foam and Laminate Anodes for Lithium-Ion Batteries
,”
ACS Appl. Mater. Interfaces
,
6
(
6
), pp.
4524
4534
.
20.
Fan
,
X.-Y.
,
Shi
,
Y.-X.
,
Wang
,
J.-J.
,
Wang
,
J.
,
Shi
,
X.-Y.
,
Xu
,
L.
,
Gou
,
L.
, and
Li
,
D.-L.
,
2013
, “
Electrochemical Synthesis and Lithium Storage Performance of Sn–Cu Alloy on Three-Dimensional Porous Cu Substrate
,”
Solid State Ionics
,
237
, pp.
1
7
.
21.
Jiang
,
T.
,
Zhang
,
S.
,
Qiu
,
X.
,
Zhu
,
W.
, and
Chen
,
L.
,
2007
, “
Preparation and Characterization of Tin-Based Three-Dimensional Cellular Anode for Lithium Ion Battery
,”
J. Power Sources
,
166
(
2
), pp.
503
508
.
22.
Nam
,
D. H.
,
Kim
,
R. H.
,
Han
,
D. W.
, and
Kwon
,
H. S.
,
2012
, “
Electrochemical Performances of Sn Anode Electrodeposited on Porous Cu Foam for Li-Ion Batteries
,”
Electrochim. Acta
,
66
, pp.
126
132
.
23.
Trahey
,
L.
,
Vaughey
,
J. T.
,
Kung
,
H. H.
, and
Thackeray
,
M. M.
,
2009
, “
High-Capacity, Microporous Cu6Sn5–Sn Anodes for Li-Ion Batteries
,”
J. Electrochem. Soc.
,
156
(
5
), p.
A385
.
24.
Larcher
,
D.
,
Beaulieu
,
L. Y.
,
MacNeil
,
D. D.
, and
Dahn
,
J. R.
,
2000
, “
In Situ X-Ray Study of the Electrochemical Reaction of Li With η′-Cu6Sn5
,”
J. Electrochem. Soc.
,
147
(
5
), pp.
1658
1662
.
25.
Nishikawa
,
K.
,
Dokko
,
K.
,
Kinoshita
,
K.
,
Woo
,
S.-W.
, and
Kanamura
,
K.
,
2009
, “
Three-Dimensionally Ordered Macroporous Ni–Sn Anode for Lithium Batteries
,”
J. Power Sources
,
189
(
1
), pp.
726
729
.
26.
Kepler
,
K. D.
,
Vaughey
,
J. T.
, and
Thackeray
,
M. M.
,
1999
, “
Copper–Tin Anodes for Rechargeable Lithium Batteries: An Example of the Matrix Effect in an Intermetallic System
,”
J. Power Sources
,
81
, pp.
383
387
.
27.
Ausderau
,
L. J.
,
Gonzalez Malabet
,
H. J.
,
Buckley
,
J. R.
,
De Andrade
,
V.
,
Liu
,
Y.
, and
Nelson
,
G. J.
,
2017
, “
Elemental and Chemical Mapping of High Capacity Intermetallic Li-Ion Anodes With Transmission X-Ray Microscopy
,”
JOM
,
69
(
9
), pp.
1478
1483
.
28.
Gürsoy
,
D.
,
De Carlo
,
F.
,
Xiao
,
X.
, and
Jacobsen
,
C.
,
2014
, “
TomoPy: A Framework for the Analysis of Synchrotron Tomographic Data
,”
J. Synchrotron Radiat.
,
21
(
5
), pp.
1188
1193
.
29.
Adams
,
J. N.
,
Ausderau
,
L. J.
, and
Nelson
,
G. J.
,
2018
, “
Structural Changes in Alloy Anodes for Li-Ion Batteries
,”
Proceedings of ASME 12th International Conference on Energy Sustainability Collocated with the ASME 2018 Power Conference and the ASME 2018 Nuclear Forum
,
Lake Buena Vista, FL
,
June 24–28
.
30.
Münch
,
B.
, and
Holzer
,
L.
,
2008
, “
Contradicting Geometrical Concepts in Pore Size Analysis Attained With Electron Microscopy and Mercury Intrusion
,”
J. Am. Ceram. Soc.
,
91
(
12
), pp.
4059
4067
.
31.
Grew
,
K. N.
,
Peracchio
,
A. A.
,
Joshi
,
A. S.
,
Izzo
Jr.,
J. R.
, and
Chiu
,
W. K. S.
,
2010
, “
Characterization and Analysis Methods for the Examination of the Heterogeneous Solid Oxide Fuel Cell Electrode Microstructure. Part 1: Volumetric Measurements of the Heterogeneous Structure
,”
J. Power Sources
,
195
(
24
), pp.
7930
7942
.
32.
Grew
,
K. N.
,
Peracchio
,
A. A.
, and
Chiu
,
W. K. S.
,
2010
, “
Characterization and Analysis Methods for the Examination of the Heterogeneous Solid Oxide Fuel Cell Electrode Microstructure: Part 2. Quantitative Measurement of the Microstructure and Contributions to Transport Losses
,”
J. Power Sources
,
195
(
24
), pp.
7943
7958
.
33.
Wang
,
J.
,
Eng
,
C.
,
Chen-Wiegart
,
Y. K.
, and
Wang
,
J.
,
2015
, “
Probing Three-Dimensional Sodiation-Desodiation Equilibrium in Sodium-Ion Batteries by In situ Hard X-Ray Nanotomography
,”
Nat. Commun.
,
6
(
1
), p.
7496
.
34.
Wang
,
J.
,
Chen-Wiegart
,
Y. K.
, and
Wang
,
J.
,
2014
, “
In situ Three-Dimensional Synchrotron X-Ray Nanotomography of the (De)Lithiation Processes in Tin Anodes
,”
Angew. Chem., Int. Ed.
,
53
(
17
), pp.
4460
4464
.
35.
Chao
,
S. C.
,
Yen
,
Y. C.
,
Song
,
Y. F.
,
Chen
,
Y. M.
,
Wu
,
H. C.
, and
Wu
,
N. L.
,
2010
, “
A Study on the Interior Microstructures of Working Sn Particle Electrode of Li-Ion Batteries by In situ X-Ray Transmission Microscopy
,”
Electrochem. Commun.
,
12
(
2
), pp.
234
237
.
36.
Taylor
,
J. R.
,
1997
,
An Introduction to Error Analysis: The Study of Uncertainties in Physical Measurements
,
University Science Books
,
Melville, NY
.
37.
Juarez-Robles
,
D.
,
Gonzalez-Malabet
,
H. J.
,
L’Antigua
,
M.
,
Xiao
,
X.
,
Nelson
,
G. J.
, and
Mukherjee
,
P. P.
,
2019
, “
Elucidating Lithium Alloying-Induced Degradation Evolution in High-Capacity Electrodes
,”
ACS Appl. Mater. Interfaces
,
11
(
1
), pp.
563
577
.
38.
Gonzalez Malabet
,
H. J.
,
Robles
,
D. J.
,
de Andrade
,
V.
,
Mukherjee
,
P. P.
, and
Nelson
,
G. J.
,
2020
, “
In Operando XANES Imaging of High Capacity Intermetallic Anodes for Lithium Ion Batteries
,”
J. Electrochem. Soc.
,
167
(
4
), p.
040523
.
You do not currently have access to this content.