Abstract

The new energy electric vehicle, which takes clean electric energy as the main driving force, has no pollutants and exhaust emissions during its operation and has a higher energy utilization ratio than the fuel locomotive. Therefore, electric vehicles have been widely developed in recent years. The maximum temperature and temperature consistency of the battery pack in the electric vehicle have a great influence on the life and safety of the battery. In this paper, the thermal management system of the lithium battery pack was taken as the research object. The temperature distribution and uniformity of the battery pack under different heat dissipation conditions were analyzed based on computational fluid dynamics (CFD). The multi-objective optimization method of the battery pack thermal management system was carried out by combining the surrogate model with fast non-dominated sorting genetic algorithm (NSGA-II). The maximum temperature of the battery pack obtained from candidate point 1 is 310.72 K, which is 4.99 K lower than the initial model temperature, and the temperature standard deviation is 0.76 K, with a reduction rate of 51.9%. Experiment results showed that maximum difference between the optimized and experimental value of the maximum temperature is 0.8 K, and the error was within 1 K. Therefore, the multi-objective optimization method proposed in this paper has high accuracy.

References

1.
Shang
,
Z.
,
Qi
,
H.
,
Liu
,
X.
,
Ouyang
,
C.
, and
Wang
,
Y.
,
2019
, “
Structural Optimization of Lithium-Ion Battery for Improving Thermal Performance Based on a Liquid Cooling System
,”
Int. J. Heat Mass Transfer
,
130
, pp.
33
41
.
2.
Chen
,
K.
,
Wu
,
W.
,
Yuan
,
F.
,
Chen
,
L.
, and
Wang
,
S.
,
2019
, “
Cooling Efficiency Improvement of Air-Cooled Battery Thermal Management System Through Designing the Flow Pattern
,”
Energy
,
167
, pp.
781
790
.
3.
Shah
,
K.
,
Vishwakarma
,
V.
, and
Jain
,
A.
,
2016
, “
Measurement of Multiscale Thermal Transport Phenomena in Li-Ion Cells: A Review
,”
ASME J. Electrochem. Energy Convers. Storage
,
13
(3), p.
030801
.
4.
Malik
,
M.
,
Dincer
,
I.
, and
Rosen
,
M. A.
,
2016
, “
Review on Use of Phase Change Materials in Battery Thermal Management for Electric and Hybrid Electric Vehicles
,”
Int. J. Energy Res.
,
40
(
8
), pp.
1011
1031
.
5.
Chen
,
K.
,
Chen
,
Y.
,
Li
,
Z.
,
Yuan
,
F.
, and
Wang
,
S.
,
2018
, “
Design of the Cell Spacings of Battery Pack in Parallel Air-Cooled Battery Thermal Management System
,”
Int. J. Heat Mass Transfer
,
127
, pp.
393
401
.
6.
Ana
,
Z.
,
Shah
,
K.
,
Jia
,
L.
, and
Ma
,
Y.
,
2019
, “
A Parametric Study for Optimization of Minichannel Based Battery Thermal Management System
,”
Appl. Therm. Eng.
,
154
, pp.
593
601
.
7.
Riu
,
L.
,
Chen
,
J.
,
Xun
,
J.
,
Jiao
,
K.
, and
Du
,
Q.
,
2014
, “
Numerical Investigation of Thermal Behaviors in Lithium-Ion Battery Stack Discharge
,”
Appl. Energy
,
132
, pp.
288
297
.
8.
Ling
,
Z.
,
Chen
,
J.
,
Fang
,
X.
,
Zhang
,
Z.
,
Xu
,
T.
,
Gao
,
X.
, and
wang
,
S.
,
2014
, “
Experimental and Numerical Investigation of the Application of Phase Change Materials in a Simulative Power Batteries Thermal Management System
,”
Appl. Energy
,
121
, pp.
104
113
.
9.
Fan
,
Y.
,
Bao
,
Y.
,
Ling
,
C.
,
Chu
,
Y.
,
Tan
,
X.
, and
Yang
,
S.
,
2019
, “
Experimental Study on the Thermal Management Performance of Air Cooling for High Energy Density Cylindrical Lithium-Ion Batteries
,”
Appl. Therm. Eng.
,
155
, pp.
96
109
.
10.
Schuster
,
E.
,
Ziebert
,
C.
,
Melcher
,
A.
,
Rohde
,
M.
, and
Seifert
,
H. J.
,
2015
, “
Thermal Behavior and Electrochemical Heat Generation in a Commercial 40 Ah Lithium Ion Pouch Cell
,”
J. Power Sources
,
286
, pp.
580
589
.
11.
Rao
,
Z.
, and
Wang
,
S.
,
2011
, “
A Review of Power Battery Thermal Energy Management
,”
Renew. Sustain. Energy Rev.
,
15
(
9
), pp.
4554
4571
.
12.
Dan
,
D.
,
Yao
,
C.
,
Zhang
,
H.
, and
Xu
,
X.
,
2019
, “
Dynamic Thermal Behavior of Micro Heat Pipe Array-Air Cooling Battery Thermal Management System Based on Thermal Network Model
,”
Appl. Therm. Eng.
,
162
, pp.
59
76
.
13.
Hong
,
S.
,
Zhang
,
X.
,
Chen
,
K.
, and
Wang
,
S.
,
2018
, “
Design of Flow Configuration for Parallel Air-Cooled Battery Thermal Management System With Secondary Vent
,”
Int. J. Heat Mass Transfer
,
116
, pp.
1204
1212
.
14.
Jilte
,
R. D.
,
Kumar
,
R.
,
Ahmadi
,
M. H.
, and
Chen
,
L.
,
2019
, “
Battery Thermal Management System Employing Phase Change Material With Cell-to-Cell Air Cooling
,”
Appl. Therm. Eng.
,
161
, p.
114199
.
15.
Reyes-Marambio
,
J.
,
Moser
,
F.
,
Gana
,
F.
,
Severino
,
B.
,
Calderon-Munoz
,
W. R.
,
Palma-Behnke
,
R.
,
Estevez
,
P. A.
,
Orchard
,
M.
, and
Cortes
,
M.
,
2016
, “
A Fractal Time Thermal Model for Predicting the Surface Temperature of Air-Cooled Cylindrical Li-Ion Cells Based on Experimental Measurements
,”
J. Power Sources
,
306
, pp.
636
645
.
16.
Wang
,
J.
,
Gan
,
Y.
,
Liang
,
J.
,
Tan
,
M.
, and
Li
,
Y.
,
2019
, “
Sensitivity Analysis of Factors Influencing a Heat Pipe-Based Thermal Management System for a Battery Module With Cylindrical Cells
,”
Appl. Therm. Eng.
,
151
, pp.
475
485
.
17.
Saw
,
L. H.
,
Ye
,
Y.
,
Tay
,
A. A. O.
,
Chong
,
W. T.
,
Kuan
,
S. H.
, and
Yew
,
M. C.
,
2016
, “
Computational Fluid Dynamic and Thermal Analysis of Lithium-Ion Battery Pack With Air Cooling
,”
Appl. Energy
,
177
, pp.
783
792
.
18.
Chen
,
K.
,
Wang
,
S.
,
Song
,
M.
, and
Chen
,
L.
,
2017
, “
Structure Optimization of Parallel Air-Cooled Battery Thermal Management System
,”
Heat Mass Transfer
,
111
, pp.
943
952
.
19.
Zhao
,
J.
,
Rao
,
Z.
, and
Li
,
Y.
,
2015
, “
Thermal Performance of Mini-Channel Liquid Cooled Cylinder-Based Battery Thermal Management for Cylindrical Lithium-Ion Power Battery
,”
Energy Convers. Manag.
,
103
, pp.
157
165
.
20.
Xie
,
J.
,
Ge
,
Z.
,
Zang
,
M.
, and
Wang
,
S.
,
2017
, “
Structural Optimization of Lithium-Ion Battery Pack With Forced Air-Cooling System
,”
Appl. Therm. Eng.
,
126
, pp.
583
593
.
21.
Severino
,
B.
,
Gana
,
F.
,
Palma-Behnke
,
R.
,
Estévez
,
P. A.
,
Calderón-Muñoz
,
W. R.
,
Orchard
,
M. E.
,
Reyes
,
J.
, and
Cortes
,
M.
,
2014
, “
Multi-Objective Optimal Design of Lithium-Ion Battery Packs Based on Evolutionary Algorithms
,”
J. Power Sources
,
267
, pp.
288
299
.
22.
De Vita
,
A.
,
Maheshwari
,
A.
,
Destro
,
M.
,
Santarelli
,
M.
, and
Carello
,
M.
,
2017
, “
Transient Thermal Analysis of a Lithium-Ion Battery Pack Comparing Different Cooling Solutions for Automotive Applications
,”
Appl. Energy
,
206
, pp.
101
112
.
23.
Ling
,
Z.
,
Lin
,
W.
,
Zhang
,
Z.
, and
Fang
,
X.
,
2020
, “
Computationally Efficient Thermal Network Model and Its Application in Optimization of Battery Thermal Management System With Phase Change Materials and Long-Term Performance Assessment
,”
Appl. Energy
,
259
, p.
114120
.
24.
Tong
,
W.
,
Somasundaram
,
K.
,
Birgersson
,
E.
,
Mujumdar
,
A. S.
, and
Yap
,
C.
,
2015
, “
Numerical Investigation of Water Cooling for a Lithium-Ion Bipolar Battery Pack
,”
Int. J. Therm. Sci.
,
94
, pp.
259
269
.
25.
Soltania
,
M.
,
Berckmans
,
G.
,
Jaguemont
,
J.
,
Ronsmans
,
J.
,
Kakihara
,
S.
,
Hegazy
,
O.
,
Van Mierlo
,
J.
, and
Omar
,
N.
,
2019
, “
Three Dimensional Thermal Model Development and Validation for Lithium-Ion Capacitor Module Including Air-Cooling System
,”
Appl. Therm. Eng.
,
153
, pp.
264
274
.
26.
Kim
,
J.
,
Oh
,
J.
, and
Lee
,
H.
,
2019
, “
Review on Battery Thermal Management System for Electric Vehicles
,”
Appl. Therm. Eng.
,
149
, pp.
192
212
.
27.
Mohammed
,
A. H.
,
Esmaeeli
,
R.
,
Alingerdroudbari
,
H.
,
Alhadri
,
M.
,
Hashemi
,
S. R.
,
Nadkarni
,
G.
, and
Farhad
,
S.
,
2019
, “
Dual-Purpose Cooling Plate for Thermal Management of Prismatic Lithium Ion Batteries During Normal Operation and Thermal Runaway
,”
Appl. Therm. Eng.
,
160
, p.
114106
.
28.
Peng
,
X.
,
Ma
,
C.
,
Garg
,
A.
,
Bao
,
N.
, and
Liao
,
X.
,
2019
, “
Thermal Performance Investigation of an Air-Cooled Lithium-Ion Battery Pack Considering the Inconsistency of Battery Cells
,”
Appl. Therm. Eng.
,
153
, pp.
596
603
.
29.
Chen
,
S.
,
Peng
,
X.
,
Bao
,
N.
, and
Garg
,
A.
,
2019
, “
A Comprehensive Analysis and Optimization Process for an Integrated Liquid Cooling Plate for a Prismatic Lithium-Ion Battery Module
,”
Appl. Therm. Eng.
,
156
, pp.
324
339
.
You do not currently have access to this content.