Abstract

A pouch cell method for retesting double-sided electrodes harvested from commercial lithium-ion batteries in a 3-electrode cell arrangement has been developed. By relying on pressure from restraint plates to make tab electrical connections, this method (1) requires no welding, (2) does not require a dry room, (3) does not require precision sealing equipment inside of an inert-gas glove box, and (4) does not require removal of composite material off of one side of the electrode which may compromise the composite to be tested on the other side. Lithium chips pressed onto copper mesh serve as the reference and counter electrodes and the electrolyte used was 1.0 M LiPF6 1:1 ethylene carbonate (EC):Diethyl carbonate (DEC) v/v. Electrochemical cycling of electrodes from a commercial 3.6 Ah 18650 lithium-ion cell demonstrated cell function and showed stable capacity and potential charge/discharge profiles after two cycles for the cathode and four cycles for the anode. The areal capacity of the anode and cathode was determined to be 5.50 ± 0.31 and 5.50 ± 0.30 mAh/cm2, respectively, based on a potential range of 0.005–1.5 V versus Li/Li+ for the anode and 3.0–4.25 V versus Li/Li+ for the cathode. High frequency, 500 kHz impedance measurements of the anode and cathode cells shows a real impedance of 1.55 Ohms and 2.17 Ohms, respectively, which is similar to prior studies on pouch cells with continuous tabs of similar capacity.

References

References
1.
Ehrlich
,
G. M.
,
2002
,
Lithium-Ion Batteries, in Handbook of Batteries
,
R. R. Donnelley & Sons Company
,
New York, NY
.
2.
Fear
,
C.
,
Juarez-Robles
,
D.
,
Jeevarajan
,
J. A.
, and
Mukherjee
,
P. P.
,
2018
, “
Elucidating Copper Dissolution Phenomenon in Li-Ion Cells Under Overdischarge Extremes
,”
J. Electrochem. Soc.
,
165
(
9
), pp.
A1639
A1647
. 10.1149/2.0671809jes
3.
Zheng
,
Y.
,
Qian
,
K.
,
Luo
,
D.
,
Li
,
Y.
,
Lu
,
Q.
,
Li
,
B.
,
He
,
Y.
,
Wang
,
X.
,
Li
,
J.
, and
Kang
,
F.
,
2016
, “
Influence of Over-Discharge on Lifetime and Performance of LiFePO4/Graphite Batteries
,”
RSC Adv.
,
6
(
36
), pp.
30474
30483
. 10.1039/C6RA01677D
4.
Ouyang
,
D.
,
Chen
,
M.
,
Liu
,
J.
,
Wei
,
R.
,
Weng
,
J.
, and
Wang
,
J.
,
2018
, “
Investigation of a Commercial Lithium-Ion Battery Under Overcharge/Over-Discharge Failure Conditions
,”
RSC Adv.
,
8
(
58
), pp.
33414
33424
. 10.1039/C8RA05564E
5.
Zhang
,
L.
,
Ma
,
Y.
,
Cheng
,
X.
,
Du
,
C.
,
Guan
,
T.
,
Cui
,
Y.
,
Sun
,
S.
,
Zuo
,
P.
,
Gao
,
Y.
, and
Yin
,
G.
,
2015
, “
Capacity Fading Mechanism During Long-Term Cycling of Over-Discharged LiCoO2/Mesocarbon Microbeads Battery
,”
J. Power Sources
,
293
, pp.
1006
1015
. 10.1016/j.jpowsour.2015.06.040
6.
He
,
H.
,
Liu
,
Y.
,
Liu
,
Q.
,
Li
,
Z.
,
Xu
,
F.
,
Dun
,
C.
,
Ren
,
Y.
, and
Wang
,
M.
,
2013
, “
Failure Investigation of LiFePO4 Cells in Over-Discharge Conditions
,”
J. Electrochem. Soc.
,
160
(
6
), pp.
A793
A804
. 10.1149/2.039306jes
7.
Abraham
,
D. P.
,
Knuth
,
J. L.
,
Dees
,
D. W.
,
Bloom
,
I.
, and
Christophersen
,
J. P.
,
2007
, “
Performance Degradation of High-Power Lithium-Ion Cells—Electrochemistry of Harvested Electrodes
,”
J. Power Sources
,
170
(
2
), pp.
465
475
. 10.1016/j.jpowsour.2007.03.071
8.
Crompton
,
K. R.
,
Hladky
,
M. P.
,
Staub
,
J. W.
, and
Landi
,
B. J.
,
2017
, “
Enhanced Overdischarge Stability of LiCoO2 by a Solution Deposited AlPO4 Coating
,”
J. Electrochem. Soc.
,
164
(
13
), pp.
A3214
A3219
. 10.1149/2.1171713jes
9.
Sarasketa-Zabala
,
E.
,
Aguesse
,
F.
,
Villarreal
,
I.
,
Rodriguez-Martinez
,
L. M.
, and
Lopez
,
C. M.
,
2015
, “
Understanding Lithium Inventory Loss and Sudden Performance Fade in Cylindrical Cells During Cycling With Deep-Discharge Steps
,”
J. Phys. Chem. C
,
119
(
2
), pp.
896
906
. 10.1021/jp510071d
10.
Torchio
,
M.
,
Magni
,
L.
,
Gopaluni
,
R. B.
,
Braatz
,
R. D.
, and
Raimondo
,
D. M.
,
2016
, “
LIONSIMBA: A Matlab Framework Based on a Finite Volume Model Suitable for Li-Ion Battery Design, Simulation, and Control
,”
J. Electrochem. Soc.
,
163
(
7
), pp.
A1192
A1205
. 10.1149/2.0291607jes
11.
Subramanian
,
V. R.
,
Boovaragavan
,
V.
,
Ramadesigan
,
V.
, and
Arabandi
,
M.
,
2009
, “
Mathematical Model Reformulation for Lithium-Ion Battery Simulations: Galvanostatic Boundary Conditions
,”
J. Electrochem. Soc.
,
156
(
4
), p.
A260
. 10.1149/1.3065083
12.
Seaman
,
A.
,
Dao
,
T. S.
, and
McPhee
,
J.
,
2014
, “
A Survey of Mathematics-Based Equivalent-Circuit and Electrochemical Battery Models for Hybrid and Electric Vehicle Simulation
,”
J. Power Sources
,
256
, pp.
410
423
. 10.1016/j.jpowsour.2014.01.057
13.
Ferguson
,
T. R.
, and
Bazant
,
M. Z.
,
2012
, “
Nonequilibrium Thermodynamics of Porous Electrodes
,”
J. Electrochem. Soc.
,
159
(
12
), pp.
A1967
A1985
. 10.1149/2.048212jes
14.
Hatchard
,
T. D.
,
MacNeil
,
D. D.
,
Basu
,
A.
, and
Dahn
,
J. R.
,
2002
, “
Thermal Model of Cylindrical and Prismatic Lithium-Ion Cells
,”
J. Electrochem. Soc.
,
148
(
7
), p.
A755
. 10.1149/1.1377592
15.
Rangarajan
,
S. P.
,
Barsukov
,
Y.
, and
Mukherjee
,
P. P.
,
2019
, “
In Operando Signature and Quantification of Lithium Plating
,”
J. Mater. Chem. A
,
7
(
36
), pp.
20683
20695
. 10.1039/C9TA07314K
16.
Crompton
,
K. R.
,
Staub
,
J. W.
,
Hladky
,
M. P.
, and
Landi
,
B. J.
,
2017
, “
Lithium Rich Cathode/Graphite Anode Combination for Lithium Ion Cells With High Tolerance to Near Zero Volt Storage
,”
J. Power Sources
,
343
, pp.
109
118
. 10.1016/j.jpowsour.2017.01.008
17.
Crompton
,
K. R.
,
Hladky
,
M.
,
Staub
,
J.
, and
Landi
,
B. J.
,
2018
, “
Scalable Bath Cell Method for Reversible Lithium Management Towards Near Zero Volt Tolerance in Lithium-Ion Cells
,”
ECS Trans.
,
85
(
13
), pp.
337
345
. 10.1149/08513.0337ecst
18.
Crompton
,
K. R.
, and
Landi
,
B. J.
,
2016
, “
Opportunities for Near Zero Volt Storage of Lithium Ion Batteries
,”
Energy Environ. Sci.
,
9
(
7
), pp.
2219
2239
. 10.1039/C6EE00836D
19.
Crompton
,
K. R.
,
2020
, “
Delayed Rapid Anode Potential Decrease During Fixed Resistive Load Overdischarge of LiFePO4/Graphite Lithium-Ion Cells
,”
J. Electrochem. Soc.
,
167
(
9
), p.
090518
. 10.1149/1945-7111/ab8730
20.
Juarez-Robles
,
D.
,
Chen
,
C.-F.
,
Barsukov
,
Y.
, and
Mukherjee
,
P.
,
2017
, “
Impedance Evolution Characteristics in Lithium-Ion Batteries
,”
J. Electrochem. Soc.
,
164
(
4
), pp.
A837
A847
. 10.1149/2.1251704jes
21.
Rangarajan
,
S. P.
,
Barsukov
,
Y.
, and
Mukherjee
,
P. P.
,
2019
, “
In Operando Impedance Based Diagnostics of Electrode Kinetics in Li-Ion Pouch Cells
,”
J. Electrochem. Soc.
,
166
(
10
), pp.
A2131
A2141
. 10.1149/2.1191910jes
22.
La Mantia
,
F.
,
Wessells
,
C. D.
,
Deshazer
,
H. D.
, and
Cui
,
Y.
,
2013
, “
Reliable Reference Electrodes for Lithium-Ion Batteries
,”
Electrochem. Commun.
,
31
, pp.
141
144
. 10.1016/j.elecom.2013.03.015
23.
Müller
,
V.
,
Scurtu
,
R. G.
,
Memm
,
M.
,
Danzer
,
M. A.
, and
Wohlfahrt-Mehrens
,
M.
,
2019
, “
Study of the Influence of Mechanical Pressure on the Performance and Aging of Lithium-Ion Battery Cells
,”
J. Power Sources
,
440
, p.
227148
. 10.1016/j.jpowsour.2019.227148
24.
Cannarella
,
J.
, and
Arnold
,
C. B.
,
2014
, “
Stress Evolution and Capacity Fade in Constrained Lithium-Ion Pouch Cells
,”
J. Power Sources
,
245
, pp.
745
751
. 10.1016/j.jpowsour.2013.06.165
25.
Mussa
,
A. S.
,
Klett
,
M.
,
Lindbergh
,
G.
, and
Lindström
,
R. W.
,
2018
, “
Effects of External Pressure on the Performance and Ageing of Single-Layer Lithium-Ion Pouch Cells
,”
J. Power Sources
,
385
, pp.
18
26
. 10.1016/j.jpowsour.2018.03.020
26.
Yao
,
J.
,
Wang
,
G. X.
,
Ahn
,
J. H.
,
Liu
,
H. K.
, and
Dou
,
S. X.
,
2003
, “
Electrochemical Studies of Graphitized Mesocarbon Microbeads as an Anode in Lithium-Ion Cells
,”
J. Power Sources
,
114
(
2
), pp.
292
297
. 10.1016/S0378-7753(02)00585-2
27.
Shim
,
J.
, and
Striebel
,
K. a.
,
2003
, “
Effect of Electrode Density on Cycle Performance and Irreversible Capacity Loss for Natural Graphite Anode in Lithium-Ion Batteries
,”
J. Power Sources
,
119–121
, pp.
934
937
. 10.1016/S0378-7753(03)00235-0
28.
Staub
,
J. W.
,
Dzara
,
M. J.
,
Crompton
,
K. R.
,
Ganter
,
M. J.
, and
Landi
,
B. J.
,
2020
, “
Balancing Irreversible Capacity in Germanium Nanoparticle: HE5050 Lithium Ion Batteries for Improved Energy Densities Exceeding 250 Wh/Kg
,”
Electrochim. Acta
,
332
, p.
135455
. 10.1016/j.electacta.2019.135455
29.
Wu
,
Q.
,
Lu
,
W.
, and
Prakash
,
J.
,
2000
, “
Characterization of a Commercial Size Cylindrical Li-Ion Cell With a Reference Electrode
,”
J. Power Sources
,
88
(
2
), pp.
237
242
. 10.1016/S0378-7753(00)00372-4
30.
McTurk
,
E.
,
Birkl
,
C. R.
,
Roberts
,
M. R.
,
Howey
,
D. A.
, and
Bruce
,
P. G.
,
2015
, “
Minimally Invasive Insertion of Reference Electrodes Into Commercial Lithium-Ion Pouch Cells
,”
ECS Electrochem. Lett.
,
4
(
12
), pp.
A145
A147
. 10.1149/2.0081512eel
31.
Landau
,
U.
,
1988
, “
Three-Electrode Measurements in Industrial Cells
,”
J. Electrochem. Soc.
,
135
(
i
), p.
396
. 10.1149/1.2095623
You do not currently have access to this content.