Abstract

Owing to high lithium ion conductivity and good stability with lithium metal, Li7La3Zr2O12 (LLZO—a solid electrolyte) has emerged as a viable candidate for solid-state battery applications. In the current study, Al-substituted LLZO (Al-LLZO) powder is synthesized using a typical solid-state reaction. The pellets are made with the synthesized powder and are subjected to annealing for different durations and its effect on the structural properties of the Al-LLZO is investigated in detail. Reitveld refinement of the powder X-ray diffraction pattern reveals that the sintered Al-LLZO belong to the cubic system with the Ia-3d space group at room temperature. Morphology and microstructural properties of sintered powder are analyzed using field emission scanning electron microscopy (FESEM) and high-resolution transmission electron microscopy (HRTEM)/selected area electron diffraction (SAED), respectively. The FESEM image of LLZO pellets shows well-structured cubic grains spread evenly over on the surface after sintering. The chemical compositions of the sample are identified using energy dispersive X-ray analysis (EDAX). The surface chemistry of the prepared samples is examined by X-ray photoelectron spectroscopy (XPS), which states that the observed photoelectron signals from O 1s at about 531 eV and Li1s at 54.52 eV correspond to the Li-O bond in Al-LLZO. Raman spectra have been analyzed and the observed Raman peaks appearing at 299 cm−1, 393 cm−1, 492 cm−1, and 514 cm−1 were assigned to Eg, F2g, A1g, and F2g, respectively. Phase transformation from C-LLZO to the pyrochore LZO phase is noticed when the sample is sintered for 12 h at 1100 °C. The impedance analysis is carried out to measure the conductivity of the Al-LLZO pellet and is found to be 0.3 × 10−5 S cm−1, which is suitable for solid electrolyte applications in lithium ion batteries.

References

References
1.
Ramakumar
,
S.
,
Deviannapoorani
,
C.
,
Dhivya
,
L.
,
Shankar
,
L. S.
, and
Murugan
,
R.
,
2017
, “
Lithium Garnets: Synthesis, Structure, Li+ Conductivity, Li+ Dynamics and Applications
,”
Prog. Mater. Sci.
,
88
, pp.
325
411
. 10.1016/j.pmatsci.2017.04.007
2.
Afyon
,
S.
,
Kravchyk
,
K. V.
,
Wang
,
S.
,
van den Broek
,
J.
,
Hänsel
,
C.
,
Kovalenko
,
M. V.
, and
Rupp
,
J. L. M.
,
2019
, “
Building Better All-Solid-State Batteries with Li-Garnet Solid Electrolytes and Metalloid Anodes
,”
J. Mater. Chem. A
,
7
(
37
), pp.
21299
21308
. 10.1039/C9TA04999A
3.
Murugan
,
R.
,
Thangadurai
,
V.
, and
Weppner
,
W.
,
2008
, “
Lattice Parameter and Sintering Temperature Dependence of Bulk and Grain-Boundary Conduction of Garnet-Like Solid Li-Electrolytes
,”
J. Electrochem. Soc.
,
155
(
1
), pp.
A90
A101
. 10.1149/1.2800764
4.
Dermenci
,
K. B.
, and
Turan
,
S.
,
2018
, “
Achieving High Performance for Aluminum Stabilized Li7La3Zr2O12 Solid Electrolytes For All Solid-State Li-ion Batteries: A Thermodynamic Point of View
,”
Int. J. Energy Res.
,
43
(
1
), pp.
141
149
. 10.1002/er.4203
5.
Xia
,
W.
,
Xu
,
B.
,
Duan
,
H.
,
Guo
,
Y.
,
Kang
,
H.
,
Li
,
H.
, and
Liu
,
H.
,
2016
, “
Ionic Conductivity and Air Stability of Al-Doped Li7La3Zr2O12 Sintered in Alumina and Pt Crucibles
,”
ACS Appl. Mater. Interfaces
,
8
(
8
), pp.
5335
5342
. 10.1021/acsami.5b12186
6.
Awaka
,
J.
,
Kijima
,
N.
,
Hayakawa
,
H.
, and
Akimoto
,
J.
,
2009
, “
Synthesis and Structure Analysis of Tetragonal Li7La3Zr2O12 With the Garnet-Related Type Structure
,”
J. Solid State Chem.
,
182
(
8
), pp.
2046
2052
. 10.1016/j.jssc.2009.05.02
7.
Murugan
,
R.
,
Thangadurai
,
V.
, and
Weppner
,
W.
,
2007
, “
Fast Lithium Ion Conduction in Garnet-Type Li7 La3Zr2O12
,”
Angew. Chem., Int. Ed.
,
46
(
41
), pp.
7778
7781
. 10.1002/anie.200701144
8.
Yu
,
S.
,
Schmidt
,
R. D.
,
Garcia-Mendez
,
R.
,
Herbert
,
E.
,
Dudney
,
N. J.
,
Wolfenstine
,
J. B.
,
Sakamoto
,
J.
, and
Siegel
,
D. J.
,
2016
, “
Elastic Properties of the Solid Electrolyte Li7La3Zr2O12 (LLZO)
,”
Chem. Mater.
,
28
(
1
), pp.
197
206
. 10.1021/acs.chemmater.5b03854
9.
Fu
,
K. K.
,
Gong
,
Y.
,
Liu
,
B.
,
Zhu
,
Y.
,
Xu
,
S.
,
Yao
,
Y.
,
Luo
,
W.
,
Wang
,
C.
,
Lacey
,
S. D.
,
Dai
,
J.
,
Chen
,
Y.
,
Mo
,
Y.
,
Wachsman
,
E.
, and
Hu
,
L.
,
2017
, “
Toward Garnet Electrolyte–Based Li Metal Batteries: An Ultrathin, Highly Effective, Artificial Solid-State Electrolyte/Metallic Li Interface
,”
Sci. Adv.
,
3
(
4
), p.
e1601659
. 10.1126/sciadv.1601659
10.
Ping
,
W.
,
Yang
,
C.
,
Bao
,
Y.
,
Wang
,
C.
,
Xie
,
H.
,
Hitz
,
E.
,
Cheng
,
J.
,
Li
,
T.
, and
Hu
,
L.
,
2019
, “
A Silicon Anode for Garnet-Based all-Solid-State Batteries: Interfaces and Nanomechanics
,”
Energy Storage Mater.
,
21
, pp.
246
252
. 10.1016/j.ensm.2019.06.024
11.
Xiao
,
Y.
,
Wang
,
Y.
,
Bo
,
S.-H.
,
Kim
,
J. C.
,
Miara
,
L. J.
, and
Ceder
,
G.
,
2020
, “
Understanding Interface Stability in Solid-State Batteries
,”
Nat. Rev. Mater.
,
5
(
2
), pp.
105
126
. 10.1038/s41578-019-0157-5
12.
Cheng
,
L.
,
Liu
,
M.
,
Mehta
,
A.
,
Xin
,
H.
,
Lin
,
F.
,
Persson
,
K.
,
Chen
,
G.
,
Crumlin
,
E. J.
, and
Doeff
,
M.
,
2018
, “
Garnet Electrolyte Surface Degradation and Recovery
,”
ACS Appl. Energy Mater.
,
1
(
12
), pp.
7244
7252
. 10.1021/acsaem.8b01723
13.
Thompson
,
T.
,
Wolfenstine
,
J.
,
Allen
,
J. L.
,
Johannes
,
M.
,
Huq
,
A.
,
David
,
I. N.
, and
Sakamoto
,
J.
,
2014
, “
Tetragonal vs. Cubic Phase Stability in Al—Free Ta Doped Li7La3Zr2O12 (LLZO)
,”
J. Mater. Chem. A
,
2
(
33
), pp.
13431
13436
. 10.1039/c4ta02099e
14.
Rajendran
,
S.
,
Thangavel
,
N. K.
,
Mahankali
,
K.
, and
Arava
,
L. M. R.
,
2020
, “
Towards Moisture-Stable and Dendrite-Free Garnet-Type Solid-State Electrolytes
,”
ACS Appl. Energy Mater.
,
3
(
7
), pp.
6775
6784
. 10.1021/acsaem.0c00905
15.
Rettenwander
,
D.
,
Redhammer
,
G.
,
Preishuber-Pflügl
,
F.
,
Cheng
,
L.
,
Miara
,
L.
,
Wagner
,
R.
,
Welzl
,
A.
,
Suard
,
E.
,
Doeff
,
M. M.
,
Wilkening
,
M.
,
Fleig
,
J.
, and
Amthauer
,
G.
,
2016
, “
Structural and Electrochemical Consequences of Al and Ga Cosubstitution in Li7La3Zr2O12 Solid Electrolytes
,”
Chem. Mater.
,
28
(
7
), pp.
2384
2392
. 10.1021/acs.chemmater.6b00579
16.
Wagner
,
R.
,
Redhammer
,
G. J.
,
Rettenwander
,
D.
,
Tippelt
,
G.
,
Welzl
,
A.
,
Taibl
,
S.
,
Fleig
,
J.
,
Franz
,
A.
,
Lottermoser
,
W.
, and
Amthauer
,
G.
,
2016
, “
Fast Li-Ion-Conducting Garnet-Related Li7−3xFexLa3Zr2O12 With Uncommon I-43d Structure
,”
Chem. Mater.
,
28
(
16
), pp.
5943
5951
. 10.1021/acs.chemmater.6b02516
17.
Wagner
,
R.
,
Rettenwander
,
D.
,
Redhammer
,
G. J.
,
Tippelt
,
G.
,
Sabathi
,
G.
,
Musso
,
M. E.
,
Stanje
,
B.
,
Wilkening
,
M.
,
Suard
,
E.
, and
Amthauer
,
G.
,
2016
, “
Synthesis, Crystal Structure, and Stability of Cubic Li7−xLa3Zr2−xBixO12
,”
Inorg. Chem.
,
55
(
23
), pp.
12211
12219
. 10.1021/acs.inorgchem.6b01825
18.
Xue
,
W.
,
Yang
,
Y.
,
Yang
,
Q.
,
Liu
,
Y.
,
Wang
,
L.
,
Chen
,
C.
, and
Cheng
,
R.
,
2018
, “
The Effect of Sintering Process on Lithium Ionic Conductivity of Li6.4Al0.2La3Zr2O12 Garnet Produced by Solid-State Synthesis
,”
RSC Adv.
,
8
(
24
), pp.
13083
13088
. 10.1039/c8ra01329b
19.
Huang
,
M.
,
Liu
,
T.
,
Deng
,
Y.
,
Geng
,
H.
,
Shen
,
Y.
,
Lin
,
Y.
, and
Nan
,
C.-W.
,
2011
, “
Effect of Sintering Temperature on Structure and Ionic Conductivity of Li7− xLa3Zr2O12−0.5x (x = 0.5 ∼ 0.7) Ceramics
,”
Solid State Ionics
,
204-205
, pp.
41
45
. 10.1016/j.ssi.2011.10.003
20.
Dhivya
,
L.
,
Karthik
,
K.
,
Ramakumar
,
S.
, and
Murugan
,
R.
,
2015
, “
Facile Synthesis of High Lithium ion Conductive Cubic Phase Lithium Garnets for Electrochemical Energy Storage Devices
,”
RSC Adv.
,
5
(
116
), pp.
96042
96051
. 10.1039/C5RA18543B
21.
Larraz
,
G.
,
Orera
,
A.
, and
Sanjúan
,
M. L.
,
2013
, “
Cubic Phases of Garnet-Type Li7La3Zr2O12: The Role of Hydration
,”
J. Mater. Chem. A
,
1
(
37
), pp.
11419
11428
. 10.1039/c3ta11996c
22.
Deviannapoorani
,
C.
,
Ramakumar
,
S.
,
Janani
,
N.
, and
Murugan
,
R.
,
2015
, “
Synthesis of Lithium Garnets From La2Zr2O7 Pyrochlore
,”
Solid State Ionics
,
283
, pp.
123
130
. 10.1016/j.ssi.2015.10.006
23.
Rangasamy
,
E.
,
Wolfenstine
,
J.
,
Allen
,
J.
, and
Sakamoto
,
J.
,
2013
, “
The Effect of 24c-Site (A) Cation Substitution on the Tetragonal-Cubic Phase Transition in Li7−xLa3−xAxZr2O12 Garnet-Based Ceramic Electrolyte
,”
J. Power Sources
,
230
, pp.
261
266
. 10.1016/j.jpowsour.2012.12.076
24.
Pfenninger
,
R.
,
Struzik
,
M.
,
Garbayo
,
I.
,
Stilp
,
E.
, and
Rupp
,
J. L. M.
,
2019
, “
A Low Ride on Processing Temperature for Fast Lithium Conduction in Garnet Solid-State Battery Films
,”
Nat. Energy
,
4
(
6
), pp.
475
483
. 10.1038/s41560-019-0384-4
25.
Cheng
,
L.
,
Park
,
J. S.
,
Hou
,
H.
,
Zorba
,
V.
,
Chen
,
G.
,
Richardson
,
T.
,
Cabana
,
J.
,
Russo
,
R.
, and
Doeff
,
M.
,
2014
, “
Effect of Microstructure and Surface Impurity Segregation on the Electrical and Electrochemical Properties of Dense Al-Substituted Li7La3Zr2O12
,”
J. Mater. Chem. A
,
2
(
1
), pp.
172
181
. 10.1039/c3ta13999a
26.
Uddin
,
M.-J.
, and
Cho
,
S.-J.
,
2018
, “
Reassessing the Bulk Ionic Conductivity of Solidstate Electrolytes
,”
Sustainable Energy Fuels
,
2
(
7
), pp.
1458
1462
. 10.1039/c8se00139a
27.
Jeevan Kumar
,
P.
,
Nishimura
,
K.
,
Senna
,
M.
,
Düvel
,
A.
,
Heitjans
,
P.
,
Kawaguchi
,
T.
,
Sakamoto
,
N.
,
Wakiya
,
N.
, and
Suzuki
,
H.
,
2016
, “
A Novel Low-Temperature Solid-State Route for Nanostructured Cubic Garnet Li7La3Zr2O12 and Its Application to Li-ion Battery
,”
RSC Adv.
,
6
(
67
), pp.
62656
62667
. 10.1039/c6ra09695f
28.
Al-Doghachi
,
F. A. J.
, and
Taufiq-Yap
,
Y. H.
,
2018
, “
CO2 Reforming of Methane Over Ni/MgO Catalysts Promoted with Zr and La Oxides
,”
Chemistry Select
,
3
(
2
), pp.
816
827
. 10.1002/slct.201701883
29.
Zhan
,
X.
,
Lai
,
S.
,
Gobet
,
M. P.
,
Greenbaum
,
S. G.
, and
Shirpour
,
M.
,
2018
, “
Defect Chemistry and Electrical Properties of Garnet-Type Li7La3Zr2O12
,”
Phys. Chem. Chem. Phys.
,
20
(
3
), pp.
1447
1459
. 10.1039/C7CP06768B
30.
Cao
,
L.
,
Yang
,
N.
,
Li
,
S.
,
Ye
,
X.
,
Yuan
,
X.
,
Li
,
H.
, and
Tong
,
H.
,
2020
, “
Alumina Film Deposited by Spin-Coating Method for Silicon Wafer Surface Passivation
,”
J. Mater. Sci.: Mater. Electronics.
,
31
(
3
), pp.
2686
2690
. 10.1007/s10854-019-02808-6
31.
Chen
,
C.
,
Li
,
Q.
,
Li
,
Y.
,
Cui
,
Z.
,
Guo
,
X.
, and
Li
,
H.
,
2018
, “
Sustainable Interfaces Between Si Anodes and Garnet Electrolytes for Room Temperature Solid State Batteries
,”
ACS Appl. Mater. Interfaces
,
10
(
2
), pp.
2185
2190
. 10.1021/acsami.7b16385
32.
Kim
,
K.-w.
,
Yang
,
S.-H.
,
Kim
,
M. Y.
,
Lee
,
M. S.
,
Lim
,
J.
,
Chang
,
D. R.
, and
Kim
,
H.-S.
,
2016
, “
Cubic Phase Behavior and Lithium ion Conductivity of Li7La3Zr2O12 Prepared by co-Precipitation Synthesis for all-Solid Batteries
,”
J. Ind. Eng. Chem.
,
36
, pp.
279
283
. 10.1016/j.jiec.2016.02.016
You do not currently have access to this content.