Abstract

The Ni-rich LiNi0.8Co0.1Mn0.1O2 (NCM811) is considered as a promising high capacity (more than 160 mAh/g) cathode for lithium-ion batteries. However, NCM811 suffers the rapid capacity fading and potential safety hazard during cycling, which hinders further commercial application. Herein, a homogeneous Al2O3 film is successfully coated on the NCM811 surface by the liquid phase deposition. The Al2O3 coating layer is evidenced by X-ray diffraction, transmission electron microscopy, scanning electron microscopy, and X-ray photoelectron spectroscopy. The results clearly demonstrate that the Al2O3 film is uniformly covered on the NCM811. In particular, the 2 wt% Al2O3-coated materials delivers a high discharge capacity of 162.2 mAh/g and with retention of 82.67% after 100 cycles at 0.5 C than that of the pristine NCM811 electrode with retention of 64.90% and discharge capacity of 111.50 mAh/g. The improved electrochemical performance can be ascribed to the thin and dense coating layer not only effectively inhibits the direct contact between the material and the electrolyte but also promotes the transfer of Li+ in the layered structure material.

References

References
1.
Kim
,
U. H.
,
Kim
,
J. H.
,
Hwang
,
J. Y.
,
Ryu
,
H. H.
,
Yoon
,
C. S.
, and
Sun
,
Y. K.
,
2019
, “
Compositionally and Structurally Redesigned High-Energy Ni-Rich Layered Cathode for Next-Generation Lithium Batteries
,”
Mater. Today
,
23
, pp.
26
36
. 10.1016/j.mattod.2018.12.004
2.
Park
,
K. J.
,
Choi
,
M. J.
,
Maglia
,
F.
,
Kim
,
S. J.
,
Kim
,
K. H.
,
Yoon
,
C. S.
, and
Sun
,
Y. K.
,
2018
, “
High-Capacity Concentration Gradient Li[Ni0.865Co0.120Al0.015]O2 Cathode for Lithium-Ion Batteries
,”
Adv. Energy Mater.
,
8
(
19
). 10.1002/aenm.201703612
3.
Lin
,
F.
,
Markus
,
I. M.
,
Nordlund
,
D.
,
Weng
,
T. C.
,
Asta
,
M. D.
,
Xin
,
H. L.
, and
Doeff
,
M. M.
,
2014
, “
Surface Reconstruction and Chemical Evolution of Stoichiometric Layered Cathode Materials for Lithium-Ion Batteries
,”
Nature Commun.
,
5
. 10.1038/ncomms452910.1038/ncomms4529
4.
Park
,
K. J.
,
Hwang
,
J. Y.
,
Ryu
,
H. H.
,
Maglia
,
F.
,
Kim
,
S. J.
,
Lamp
,
P.
,
Yoon
,
C. S.
, and
Sun
,
Y. K.
,
2019
, “
Degradation Mechanism of Ni-Enriched NCA Cathode for Lithium Batteries: Are Microcracks Really Critical?
,”
ACS Energy Lett.
,
4
(
6
), pp.
1394
1400
. 10.1021/acsenergylett.9b00733
5.
Zhang
,
Q.
,
Su
,
Y.
,
Lai
,
C.
,
Lu
,
Y.
,
Bao
,
L.
,
He
,
T.
,
Wang
,
J.
,
Tan
,
J.
, and
Wu
,
F.
,
2018
, “
Pre-Oxidizing the Precursors of Nickel-Rich Cathode Materials to Regulate Their Li+/Ni2+ Cation Ordering Towards Cyclability Improvements
,”
J. Power Sources
,
396
, pp.
734
741
. 10.1016/j.jpowsour.2018.06.091
6.
Min
,
K.
,
Jung
,
C.
,
Ko
,
D. S.
,
Kim
,
K.
,
Jang
,
J.
,
Park
,
K.
, and
Cho
,
E.
,
2018
, “
High-Performance and Industrially Feasible Ni-Rich Layered Cathode Materials by Integrating Coherent Interphase
,”
ACS Appl. Mater. Interfaces
,
10
(
24
), pp.
20599
20610
. 10.1021/acsami.8b05648
7.
Li
,
T.
,
Li
,
X.
,
Wang
,
Z.
,
Guo
,
H.
,
Peng
,
W.
, and
Zeng
,
K.
,
2015
, “
Electrochemical Properties of LiNi0.6Co0.2Mn0.2O2 as Cathode Material for Li-Ion Batteries Prepared by Ultrasonic Spray Pyrolysis
,”
Mater. Lett.
,
159
, pp.
39
42
. 10.1016/j.matlet.2015.06.075
8.
Biasi
,
L.
,
Schwarz
,
B.
,
Brezesinski
,
T.
,
Hartmann
,
P.
,
Janek
,
J.
, and
Ehrenberg
,
H.
,
2019
, “
Chemical, Structural, and Electronic Aspects of Formation and Degradation Behavior on Different Length Scales of Ni-Rich NCM and Li-Rich HE-NCM Cathode Materials in Li-Ion Batteries
,”
Adv. Mater.
,
31
(
26
), p.
1900985
. 10.1002/adma.201900985
9.
Sun
,
Z.
,
Xu
,
L.
,
Dong
,
C.
,
Zhanga
,
H.
,
Zhang
,
M.
,
Ma
,
Y.
,
Liu
,
Y.
,
Li
,
Z.
,
Zhou
,
Y.
,
Han
,
Y.
, and
Chen
,
Y. S.
,
2019
, “
A Facile Gaseous Sulfur Treatment Strategy for Li-Rich and Ni-Rich Cathode Materials With High Cycling and Rate Performance
,”
Nano Energy
,
63
. 10.1016/j.nanoen.2019.103887
10.
Dua
,
M.
,
Yang
,
P.
,
He
,
W.
,
Bie
,
S.
,
Zhao
,
H.
,
Yin
,
J.
,
Zou
,
Z. G.
, and
Liu
,
J.
,
2019
, “
Enhanced High-Voltage Cycling Stability of Ni-Rich LiNi0.8Co0.1Mn0.1O2 Cathode Coated With Li2O-2B2O3
,”
J. Alloys Compd.
,
805
, pp.
991
998
. 10.1016/j.jallcom.2019.07.176
11.
Tina
,
W.
,
Schipper
,
F.
,
Erickson
,
E. M.
,
Susai
,
F. A.
,
Markovsky
,
B.
, and
Aurbach
,
D.
,
2019
, “
Structural and Electrochemical Aspects of LiNi0.8Co0.1Mn0.1O2 Cathode Materials Doped by Various Cations
,”
ACS Energy Lett.
,
4
(
2
), pp.
508
516
. 10.1021/acsenergylett.8b02302
12.
Wu
,
F.
,
Liu
,
N.
,
Chen
,
L.
,
Su
,
Y. F.
,
Tan
,
G.
,
Bao
,
L.
,
Zhang
,
Q.
,
Lu
,
Y.
,
Wang
,
J.
,
Chen
,
S.
, and
Tan
,
J.
, “
Improving the Reversibility of the H2-H3 Phase Transitions for Layered Ni -Rich Oxide Cathode Towards Retarded Structural Transition and Enhanced Cycle Stability
,”
Nano Energy
,
59
, pp.
50
57
. 10.1016/j.nanoen.2019.02.027
13.
Grenier
,
A.
,
Liu
,
H.
,
Wiaderek
,
K. M.
,
Zachary
,
W. L.
,
Borkiewicz
,
O.
,
Piper
,
L. F. J.
,
Chupas
,
P. J.
, and
Chapman
,
K. W.
,
2017
, “
Reaction Heterogeneity in LiNi0.8Co0.15Al0.05O2 Induced by Surface Layer
,”
Chem. Mater.
,
29
(
17
), pp.
57345
57352
. 10.1021/acs.chemmater.7b02236
14.
Mao
,
Y.
,
Wang
,
X.
,
Xia
,
S.
,
Zhang
,
K.
,
Wei
,
C.
,
Bak
,
S.
,
Shadike
,
Z.
,
Liu
,
X.
,
Yang
,
Y.
,
Xu
,
R.
,
Pianetta
,
P.
,
Ermon
,
S.
,
Stavitski
,
E.
,
Zhao
,
K.
,
Xu
,
Z.
,
Lin
,
F.
,
Yang
,
X. Q.
,
Hu
,
E.
, and
Liu
,
Y.
,
2019
, “
High-Voltage Charging-Induced Strain, Heterogeneity, and Micro-Cracks in Secondary Particles of a Nickel-Rich Layered Cathode Material
,”
Adv. Funct. Mater.
,
29
, p.
18
. 10.1002/adfm.201900247
15.
Liu
,
S.
,
Chen
,
X.
,
Zhao
,
J.
,
Su
,
J.
,
Zhang
,
C.
,
Huang
,
T.
,
Wu
,
J.
, and
Yu
,
A.
,
2018
, “
Uncovering the Role of Nb Modification in Improving the Structure Stability and Electrochemical Performance of LiNi0.6Co0.2Mn0.2O2 Cathode Charged at Higher Voltage of 4.5 V
,”
J. Power Sources
,
374
, pp.
149
157
. 10.1016/j.jpowsour.2017.11.037
16.
Li
,
S.
,
Fu
,
X.
, and
Zhou
,
J.
,
2016
, “
An Effective Approach to Improve the Electrochemical Performance of LiNi0.6Co0.2Mn0.2O2 Cathode by an MOF-Derived Coating
,”
J. Mater. Chem. A
,
4
(
16
), pp.
5823
5827
. 10.1039/C5TA10773C
17.
Sun
,
Z.
,
Wang
,
D.
,
Fan
,
Y.
,
Jiao
,
L.
,
Li
,
F.
,
Wu
,
T.
,
Han
,
D.
, and
Niu
,
L.
,
2016
, “
Improved Performances of LiNi0.6Co0.15Mn0.25O2 Cathode Material With Full Concentration-Gradient for Lithium Ion Batteries
,”
RSC Adv.
,
105
(
105
), pp.
103747
103753
. 10.1039/C6RA23088A
18.
Lai
,
Y.
,
Xu
,
M.
,
Zhang
,
Z.
,
Gao
,
C.
,
Wang
,
P.
, and
Yu
,
Z.
,
2016
, “
Optimized Structure Stability and Electrochemical Performance of LiNi0.8Co0.15Al0.05O2 by Sputtering Nanoscale ZnO Film
,”
J. Power Sources
,
309
, pp.
20
26
. 10.1016/j.jpowsour.2016.01.079
19.
Tao
,
F.
,
Yan
,
X.
,
Liu
,
J.
,
Zhang
,
H.
, and
Chen
,
L.
,
2016
, “
Effects of PV Passisted Co3O4 Coating on the Electrochemical and Storage Properties of LiNi0.6Co0.2Mn0.2O2 at High Cut-Off Voltage
,”
Electrochim. Acta
,
210
, pp.
548
556
. 10.1016/j.electacta.2016.05.060
20.
Lee
,
S.
,
Kim
,
M.
,
Jeong
,
J.
,
Kim
,
D.
,
Chung
,
K.
,
Roh
,
K.
, and
Kim
,
K.
,
2017
, “
Li3PO4 Surface Coating on Ni-Rich LiNi0.6Co0.2Mn0.2O2 by a Citric Acid Assisted Sol-Gel Method: Improved Thermal Stability and High-Voltage Performance
,”
J. Power Sources
,
360
, pp.
206
214
. 10.1016/j.jpowsour.2017.05.042
21.
Wang
,
J.
,
Yu
,
Y.
,
Li
,
B.
,
Fu
,
T.
,
Xie
,
D.
,
Cai
,
J.
, and
Zhao
,
J.
,
2015
, “
Improving the Electrochemical Properties of LiNi0.5Co0.2Mn0.3O2 at 4.6 V Cutoff Potential by Surface Coating With Li2TiO3 for Lithium-Ion Batteries
,”
Phys. Chem. Chem. Phys.
,
17
(
47
), pp.
32033
32043
. 10.1039/C5CP05319F
22.
Luo
,
W.
, and
Zheng
,
B.
,
2017
, “
Improved Electrochemical Performance of LiNi0.5Co0.2Mn0.3O2 Cathode Material by Double-Layer Coating With Graphene Oxide and V2O5 for Lithium-Ion Batteries
,”
Appl. Surf. Sci.
,
404
, pp.
310
317
. 10.1016/j.apsusc.2017.01.200
23.
Lu
,
X.
,
Li
,
X.
,
Wang
,
Z.
,
Guo
,
H.
,
Yan
,
G.
, and
Yin
,
X.
,
2014
, “
A Modified Co-Precipitation Process to Coat LiNi1/3Co1/3Mn1/3O2 Onto LiNi0.8Co0.1Mn0.1O2 for Improving the Electrochemical Performance
,”
Appl. Surf. Sci.
,
297
, pp.
182
187
. 10.1016/j.apsusc.2014.01.121
24.
Xiong
,
X.
,
Wang
,
Z.
,
Guo
,
H.
,
Zhang
,
Q.
, and
Li
,
X.
,
2013
, “
Enhanced Electrochemical Properties of Lithium-Reactive V2O5 Coated on the LiNi0.8Co0.1Mn0.1O2 Cathode Material for Lithium Ion Batteries at 60 °C
,”
J. Mater. Chem. A
,
1
(
4
), pp.
1284
1288
. 10.1039/C2TA00678B
25.
Wang
,
M.
,
Zhang
,
R.
,
Gong
,
Y.
,
Su
,
Y.
,
Xiang
,
D.
,
Chen
,
L.
,
Chen
,
Y.
,
Luo
,
M.
, and
Mo
,
C.
,
2017
, “
Improved Electrochemical Performance of the LiNi0.8Co0.1Mn0.1O2 Material With Lithium-Ion Conductor Coating for Lithium-Ion Batteries
,”
Solid State Ionics
,
312
, pp.
53
60
. 10.1016/j.ssi.2017.10.017
26.
Cheng
,
X.
,
Zheng
,
J.
,
Lu
,
J.
,
Li
,
Y.
,
Yan
,
P.
, and
Zhang
,
Y.
,
2019
, “
Realizing Superior Cycling Stability of Ni-Rich Layered Cathode by Combination of Grain Boundary Engineering and Surface Coating
,”
Nano Energy
,
62
, pp.
30
37
. 10.1016/j.nanoen.2019.05.021
27.
Meng
,
K.
,
Wang
,
Z.
,
Guo
,
H.
,
Li
,
X.
, and
Wang
,
D.
,
2016
, “
Improving the Cycling Performance of LiNi0.8Co0.1Mn0.1O2 by Surface Coating With Li2TiO3
,”
Electrochim. Acta
,
211
, pp.
822
831
. 10.1016/j.electacta.2016.06.110
28.
Zheng
,
J.
,
Yang
,
Z.
,
He
,
Z.
,
Tong
,
H.
,
Yu
,
W.
, and
Zhang
,
J.
,
2014
, “
In Situ Formed LiNi0.8Co0.15Al0.05O2@Li4SiO4 Composite Cathode Material With High Rate Capability and Long Cycling Stability for Lithium-Ion Batteries
,”
Nano Energy
,
53
, pp.
613
621
. 10.1016/j.nanoen.2018.09.014
29.
Chen
,
Y.
,
Zhang
,
Y.
,
Wang
,
F.
,
Wang
,
Z.
, and
Zhang
,
Q.
,
2014
, “
Improve the Structure and Electrochemical Performance of LiNi0.6Co0.2Mn0.2O2 Cathode Material by Nano-Al2O3 Ultrasonic Coating
,”
J. Alloys Compd.
,
611
, pp.
135
141
. 10.1016/j.jallcom.2014.05.068
30.
Kim
,
U. H.
,
Ryu
,
H. H.
,
Kim
,
J. H.
,
Mücke
,
R.
,
Kaghazchi
,
P.
,
Yoon
,
C. S.
, and
Sun
,
Y. K.
,
2019
, “
Microstructure-Controlled Ni-Rich Cathode Material by Microscale Compositional Partition for Next-Generation Electric Vehicles
,”
Adv. Energy Mater.
,
9
(
15
). 10.1002/aenm.201970046
31.
Xu
,
L.
,
Zhou
,
F.
,
Zhou
,
H.
,
Kong
,
J.
,
Wang
,
Q.
, and
Yan
,
G.
,
2018
, “
Ti3C2(OH)2 Coated Li(Ni0.6Co0.2Mn0.2)O2 Cathode Material With Enhanced Electrochemical Properties for Lithium Ion Battery
,”
Electrochim. Acta
,
289
, pp.
120
130
. 10.1016/j.electacta.2018.08.085
32.
Sari
,
H. M. K.
, and
Li
,
X.
,
2019
, “
Controllable Cathode–Electrolyte Interface of Li[Ni0.8Co0.1Mn0.1]O2 for Lithium Ion Batteries: A Review
,”
Adv. Energy Mater.
,
9
(
39
). 10.1002/aenm.201970151
33.
Liua
,
W.
,
Li
,
X.
,
Xiong
,
D.
,
Hao
,
Y.
,
Li
,
J.
,
Kou
,
H.
,
Yan
,
B.
,
Li
,
D.
,
Lu
,
S.
,
Koo
,
A.
,
Keega
,
A.
, and
Sun
,
X.
,
2018
, “
Significantly Improving Cycling Performance of Cathodes in Lithium Ion Batteries: The Effect of Al2O3 and LiAlO2 Coatings on LiNi0.6Co0.2Mn0.2O2
,”
Nano Energy
,
44
, pp.
111
120
. 10.1016/j.nanoen.2017.11.010
34.
Hu
,
G.
,
Zhang
,
M.
,
Liang
,
L.
,
Peng
,
Z.
,
Du
,
K.
, and
Cao
,
Y.
,
2016
, “
Mg–Al–B Co-Substitution LiNi0.5Co0.2Mn0.3O2 Cathode Materials With Improved Cycling Performance for Lithium-Ion Battery Under High Cutoff Voltage
,”
Electrochim. Acta
,
190
, pp.
264
275
. 10.1016/j.electacta.2016.01.039
35.
Wang
,
D.
,
Wang
,
Z.
,
Li
,
X.
,
Guo
,
H.
,
Xu
,
Y.
,
Fan
,
Y.
, and
Pan
,
W.
,
2016
, “
Effect of Surface Fluorine Substitution on High Voltage Electrochemical Performances of Layered LiNi0.5Co0.2Mn0.3O2 Cathode Materials
,”
Appl. Surf. Sci.
,
371
, pp.
172
179
. 10.1016/j.apsusc.2016.02.224
36.
Lei
,
T.
,
Li
,
Y.
,
Su
,
Q.
,
Cao
,
G.
,
Li
,
W.
,
Chen
,
Y.
,
Xue
,
L.
, and
Deng
,
S.
,
2018
, “
High-Voltage Electrochemical Performance of LiNi0.5Co0.2Mn0.3O2 Cathode Materials via Al Concentration Gradient Modification
,”
Ceram. Int.
,
44
(
8
), pp.
8809
8817
. 10.1016/j.ceramint.2018.02.053
37.
Liu
,
S.
,
Dang
,
Z.
,
Liu
,
D.
,
Zhang
,
C.
,
Huang
,
T.
, and
Yu
,
A.
,
2018
, “
Comparative Studies of Zirconium Doping and Coating on LiNi0.6Co0.2Mn0.2O2 Cathode Material at Elevated Temperatures
,”
J. Power Sources
,
396
, pp.
288
296
. 10.1016/j.jpowsour.2018.06.052
38.
Chen
,
C.
,
Tao
,
T.
,
Qi
,
W.
,
Zeng
,
H.
,
Wu
,
Y.
,
Liang
,
B.
,
Yao
,
Y.
,
Lu
,
S.
, and
Chen
,
Y.
,
2017
, “
High-Performance Lithium Ion Batteries Using SiO2-Coated LiNi0.5Co0.2Mn0.3O2 Microspheres as Cathodes
,”
J. Alloys Compd.
,
709
, pp.
708
716
. 10.1016/j.jallcom.2017.03.225
You do not currently have access to this content.