Abstract

The crush safety of lithium-ion batteries (LIBs) has recently become one of the hottest topics as the electric vehicle (EV) market is growing rapidly. In this study, mechanical properties of prismatic lithium-ion batteries under compression loading are investigated. Batteries with different values of state of charge (SOC) under different loading directions are compared. Results show LIB cells with different SOCs under same loading direction exhibit similar response curve profile, however, the load capacities of LIBs can be influenced by SOCs. The stiffness and stress have approximately linear relationship with the SOC values. Based on experimental results, finite element models are established which can predict the mechanical properties of prismatic LIBs. The proposed models can be utilized to evaluate the crush behaviors of LIBs, providing guidance for electric vehicle safety design.

References

References
1.
Dunn
,
B.
,
Kamath
,
H.
, and
Tarascon
,
J.-M.
,
2011
, “
Electrical Energy Storage for the Grid: A Battery of Choices
,”
Science
,
334
(
6058
), pp.
928
935
. 10.1126/science.1212741
2.
Goodenough
,
J. B.
, and
Kim
,
Y.
,
2010
, “
Challenges for Rechargeable Li Batteries
,”
Chem. Mater.
,
22
(
3
), pp.
587
603
. 10.1021/cm901452z
3.
Jia
,
Y.
,
Sha
,
Y.
,
Liu
,
B.
,
Zhao
,
H.
,
Li
,
J.
, and
Xu
,
J.
,
2019
, “
Unlocking the Coupling Mechanical-Electrochemical Behavior of Lithium-Ion Battery Upon Dynamic Mechanical Loading
,”
Energy
,
166
(
1
), pp.
951
960
. 10.1016/j.energy.2018.10.142
4.
Song
,
Z.
,
Li
,
J.
,
Hou
,
J.
,
Hofmann
,
H.
,
Ouyang
,
M.
, and
Du
,
J.
,
2018
, “
The Battery-Supercapacitor Hybrid Energy Storage System in Electric Vehicle Applications: A Case Study
,”
Energy
,
154
(
1
), pp.
433
441
. 10.1016/j.energy.2018.04.148
5.
Wang
,
L.
,
Duan
,
X.
,
Liu
,
B.
,
Li
,
Q. M.
,
Yin
,
S.
, and
Xu
,
J.
,
2020
, “
Deformation and Failure Behaviors of Anode in Lithium-Ion Batteries: Model and Mechanism
,”
J. Power Sources
,
448
(
1
), p.
227468
. 10.1016/j.jpowsour.2019.227468
6.
Zhao
,
R.
,
Liu
,
J.
, and
Gu
,
J.
,
2016
, “
Simulation and Experimental Study on Lithium Ion Battery Short Circuit
,”
Appl. Energy
,
173
(
1
), pp.
29
39
. 10.1016/j.apenergy.2016.04.016
7.
Poullikkas
,
A.
,
2015
, “
Sustainable Options for Electric Vehicle Technologies
,”
Renewable Sustainable Energy Rev.
,
41
(
1
), pp.
1277
1287
. 10.1016/j.rser.2014.09.016
8.
Ping
,
P.
,
Wang
,
Q.
,
Huang
,
P.
,
Sun
,
J.
, and
Chen
,
C.
,
2014
, “
Thermal Behaviour Analysis of Lithium-Ion Battery at Elevated Temperature Using Deconvolution Method
,”
Appl. Energy
,
129
(
1
), pp.
261
273
. 10.1016/j.apenergy.2014.04.092
9.
Liu
,
J.
,
Duan
,
Q.
,
Ma
,
M.
,
Zhao
,
C.
,
Sun
,
J.
, and
Wang
,
Q.
,
2020
, “
Aging Mechanisms and Thermal Stability of Aged Commercial 18650 Lithium Ion Battery Induced by Slight Overcharging Cycling
,”
J. Power Sources
,
445
(
1
), p.
227263
. 10.1016/j.jpowsour.2019.227263
10.
Liu
,
B.
,
Jia
,
Y.
,
Yin
,
S.
,
Yuan
,
C.
,
Hu
,
Z.
,
Wang
,
L.
,
Li
,
Y.
, and
Xu
,
J.
,
2018
, “
Safety Issues Caused by Internal Short Circuits in Lithium-Ion Batteries
,”
J. Mater. Chem. A
,
6
(
43
), pp.
21475
21484
. 10.1039/C8TA08997C
11.
Liu
,
B.
,
Jia
,
Y.
,
Yuan
,
C.
,
Wang
,
L.
,
Gao
,
X.
,
Yin
,
S.
, and
Xu
,
J.
,
2019
, “
Safety Issues and Mechanisms of Lithium-Ion Battery Cell Upon Mechanical Abusive Loading: A Review
,”
Energy Storage Mater.
,
24
(
1
), pp.
85
112
. 10.1016/j.ensm.2019.06.036
12.
Greve
,
L.
, and
Fehrenbach
,
C.
,
2012
, “
Mechanical Testing and Macro-Mechanical Finite Element Simulation of the Deformation, Fracture, and Short Circuit Initiation of Cylindrical Lithium Ion Battery Cells
,”
J. Power Sources
,
214
(
15
), pp.
377
385
. 10.1016/j.jpowsour.2012.04.055
13.
Wierzbicki
,
T.
, and
Sahraei
,
E.
,
2013
, “
Homogenized Mechanical Properties for the Jellyroll of Cylindrical Lithium-Ion Cells
,”
J. Power Sources
,
241
(
1
), pp.
467
476
. 10.1016/j.jpowsour.2013.04.135
14.
Newaz
,
G.
,
Mundhe
,
S.
,
Arava
,
L.
,
Zhu
,
M.
,
Faruque
,
O.
, and
Barbat
,
S.
,
2020
, “
Direct Assessment of Separator Strain in Li-Ion Batteries at the Onset of Mechanically Induced Short Circuit
,”
Energies
,
13
(
3
), p.
669
. 10.3390/en13030669
15.
Sahraei
,
E.
,
Meier
,
J.
, and
Wierzbicki
,
T.
,
2013
, “
Characterizing and Modeling Mechanical Properties and Onset of Short Circuit for Three Types of Lithium-Ion Pouch Cells
,”
J. Power Sources
,
247
(
1
), pp.
503
516
. 10.1016/j.jpowsour.2013.08.056
16.
Golmon
,
S.
,
Maute
,
K.
, and
Dunn
,
M. L.
,
2009
, “
Numerical Modeling of Electrochemical–Mechanical Interactions in Lithium Polymer Batteries
,”
Comput. Struct.
,
87
(
23
), pp.
1567
1579
. 10.1016/j.compstruc.2009.08.005
17.
Xu
,
J.
,
Liu
,
B.
,
Wang
,
X.
, and
Hu
,
D.
,
2016
, “
Computational Model of 18650 Lithium-Ion Battery With Coupled Strain Rate and SOC Dependencies
,”
Appl. Energy
,
172
(
15
), pp.
180
189
. 10.1016/j.apenergy.2016.03.108
18.
Sahraei
,
E.
,
Hill
,
R.
, and
Wierzbicki
,
T.
,
2012
, “
Calibration and Finite Element Simulation of Pouch Lithium-Ion Batteries for Mechanical Integrity
,”
J. Power Sources
,
201
(
1
), pp.
307
321
. 10.1016/j.jpowsour.2011.10.094
19.
Xu
,
J.
,
Liu
,
B.
,
Wang
,
L.
, and
Shang
,
S.
,
2015
, “
Dynamic Mechanical Integrity of Cylindrical Lithium-Ion Battery Cell Upon Crushing
,”
Eng. Fail Anal.
,
53
(
1
), pp.
97
110
. 10.1016/j.engfailanal.2015.03.025
20.
Sahraei
,
E.
,
Campbell
,
J.
, and
Wierzbicki
,
T.
,
2012
, “
Modeling and Short Circuit Detection of 18650 Li-Ion Cells Under Mechanical Abuse Conditions
,”
J. Power Sources
,
220
(
15
), pp.
360
372
. 10.1016/j.jpowsour.2012.07.057
21.
Chen
,
X.
,
Wang
,
T.
,
Zhang
,
Y.
,
Ji
,
H.
, and
Li
,
L.
,
2020
, “
Dynamic Behavior and Modeling of Prismatic Lithium-Ion Battery
,”
Int. J. Energy Res.
,
44
(
4
), pp.
2984
2997
. 10.1002/er.5126
22.
Cannarella
,
J.
,
Leng
,
C. Z.
, and
Arnold
,
C. B.
,
2014
, “
On the Coupling Between Stress and Voltage in Lithium Ion Pouch Cells
,”
Proc. SPIE
,
9115
(
1
), p.
91150
. 10.1117/12.2055152
23.
Lai
,
W. J.
,
Ali
,
M. Y.
, and
Pan
,
J.
,
2014
, “
Mechanical Behavior of Representative Volume Elements of Lithium-Ion Battery Cells Under Compressive Loading Conditions
,”
J. Power Sources
,
245
(
1
), pp.
609
623
. 10.1016/j.jpowsour.2013.06.134
24.
Xu
,
J.
,
Liu
,
B.
, and
Hu
,
D.
,
2016
, “
State of Charge Dependent Mechanical Integrity Behavior of 18650 Lithium-Ion Batteries
,”
Sci. Rep.
,
6
(
1
), p.
21829
. 10.1038/srep21829
25.
Xu
,
J.
,
Wang
,
L.
,
Guan
,
J.
, and
Yin
,
S.
,
2016
, “
Coupled Effect of Strain Rate and Solvent on Dynamic Mechanical Behaviors of Separators in Lithium Ion Batteries
,”
Mater. Des.
,
95
(
5
), pp.
319
328
. 10.1016/j.matdes.2016.01.082
26.
Cannarella
,
J.
,
Liu
,
X.
,
Leng
,
C. Z.
,
Sinko
,
P. D.
,
Gor
,
G. Y.
, and
Arnold
,
C. B.
,
2014
, “
Mechanical Properties of a Battery Separator Under Compression and Tension
,”
J. Electrochem. Soc.
,
166
(
11
), pp.
F3117
F3122
. 10.1149/2.0191411jes
27.
Chen
,
J.
,
Liu
,
J.
,
Qi
,
Y.
,
Sun
,
T.
, and
Li
,
X.
,
2013
, “
Unveiling the Roles of Binder in the Mechanical Integrity of Electrodes for Lithium-Ion Batteries
,”
J. Electrochem. Soc.
,
160
(
9
), pp.
A1502
A1509
. 10.1149/2.088309jes
28.
Wang
,
L.
,
Yin
,
S.
,
Zhang
,
C.
,
Huan
,
Y.
, and
Xu
,
J.
,
2018
, “
Mechanical Characterization and Modeling for Anodes and Cathodes in Lithium-Ion Batteries
,”
J. Power Sources
,
392
(
1
), pp.
265
273
. 10.1016/j.jpowsour.2018.05.007
29.
Miroshnikov
,
M.
,
Kato
,
K.
,
Badu
,
G.
,
Thangavel
,
N. K.
,
Mahankali
,
K.
,
Hodenstein
,
E.
,
Wang
,
H.
,
Satapathy
,
S.
,
Divya
,
K. P.
,
Asare
,
H.
,
Ajayan
,
P. M.
,
Arava
,
L.
, and
John
,
G.
,
2019
, “
Made From Henna! A Fast-Charging, High-Capacity, and Recyclable Tetrakislawsone Cathode Material for Lithium Ion Batteries
,”
ACS Sustainable Chem. Eng.
,
7
(
16
), pp.
13836
13844
. 10.1021/acssuschemeng.9b01800
30.
Wang
,
L.
,
Yin
,
S.
, and
Xu
,
J.
,
2019
, “
A Detailed Computational Model for Cylindrical Lithium-Ion Batteries Under Mechanical Loading: From Cell Deformation to Short-Circuit Onset
,”
J. Power Sources
,
413
(
15
), pp.
284
292
. 10.1016/j.jpowsour.2018.12.059
31.
Kisters
,
T.
,
Sahraei
,
E.
, and
Wierzbicki
,
T.
,
2017
, “
Dynamic Impact Tests on Lithium-Ion Cells
,”
Int. J. Impact Eng.
,
108
(
1
), pp.
205
216
. 10.1016/j.ijimpeng.2017.04.025
32.
Yu-Ping
,
E.
, and
Wang
,
Z. W.
,
2010
, “
Plateau Stress of Paper Honeycomb as Response to Various Relative Humidities
,”
Packag. Technol. Sci.
,
23
(
4
), pp.
203
216
. 10.1002/pts.890
33.
Fu
,
R.
,
Meng
,
X.
, and
Choe
,
S. Y.
,
2013
, “
Modeling, Validation and Analysis of Mechanical Stress Generation and Dimension Changes of a Pouch Type High Power Li-Ion Battery
,”
J. Power Sources
,
224
(
15
), pp.
211
224
. 10.1016/j.jpowsour.2012.09.096
34.
Yue
,
Q.
,
Hector
,
L.
,
Timmons
,
A.
, and
Guo
,
H.
,
2010
, “
Three-Fold Increase in the Modulus of Graphite Negative Electrodes During Lithium Intercalation
,”
World J. Urol.
,
21
(
2
), pp.
95
99
. 10.1007/s00345-003-0335-2
35.
Villanueva
,
D.
, and
Feijóo
,
A.
,
2018
, “
Comparison of Logistic Functions for Modeling Wind Turbine Power Curves
,”
Electr. Power Syst. Res.
,
155
(
1
), pp.
281
288
. 10.1016/j.epsr.2017.10.028
36.
Marichal
,
J. L.
,
Mathonet
,
P.
, and
Tomaschek
,
J. R.
,
2015
, “
A Classification of Barycentrically Associative Polynomial Functions
,”
Aequationes Math.
,
89
(
5
), pp.
1281
1291
. 10.1007/s00010-014-0332-0
37.
Kasuya
,
E.
,
2019
, “
On the Use of r and r Squared in Correlation and Regression
,”
Ecol. Res.
,
34
(
1
), pp.
235
236
. 10.1111/1440-1703.1011
38.
Zhu
,
J.
,
Zhang
,
X.
,
Sahraei
,
E.
, and
Wierzbicki
,
T.
,
2016
, “
Deformation and Failure Mechanisms of 18650 Battery Cells Under Axial Compression
,”
J. Power Sources
,
336
(
30
), pp.
332
340
. 10.1016/j.jpowsour.2016.10.064
This content is only available via PDF.
You do not currently have access to this content.