Abstract

Porous buffer layers for anode-supported solid oxide fuel cells (SOFCs) have been investigated for many years with different thicknesses of the buffer layer in each study. In this work, micro-tubular SOFCs having samarium-doped ceria (SDC) and gadolinium-doped ceria (GDC) buffer layers are compared using the current–voltage technique, electrochemical impedance spectroscopy, scanning electron microscopy, and energy-dispersive X-ray spectroscopy. The thickness of the porous SDC and GDC buffer layer is investigated systematically with the thickness varying between 0.3 and 2.0 μm. The power density varies between 212 and 1004 mW/cm2 for samples having different SDC buffer layer thickness. Comparable changes occur for the SOFCs with a GDC buffer layer, but less variation in polarization losses resulted. Variation in electrochemical performance varies due to changes in ohmic resistance, cathode activation polarization, and interfacial reactions between the cathode and electrolyte materials.

References

References
1.
Kendall
,
K.
,
2010
, “
Progress in Microtubular Solid Oxide Fuel Cells
,”
Int. J. Appl. Ceram. Technol.
,
7
(
1
), pp.
1
9
. 10.1111/j.1744-7402.2008.02350.x
2.
Lawlor
,
V.
,
Griesser
,
S.
,
Buchinger
,
G.
,
Olabi
,
A. G.
,
Cordiner
,
S.
, and
Meissner
,
D.
,
2009
, “
Review of the Micro-Tubular Solid Oxide Fuel Cell. Part I. Stack Design Issues and Research Activities
,”
J. Power Sources
,
193
(
2
), pp.
387
399
. 10.1016/j.jpowsour.2009.02.085
3.
Murugan
,
S.
, and
Horák
,
B.
,
2016
, “
A Review of Micro Combined Heat and Power Systems for Residential Applications
,”
Renew. Sustain. Energy Rev.
,
64
, pp.
144
162
. 10.1016/j.rser.2016.04.064
4.
Milcarek
,
R. J.
,
Ahn
,
J.
, and
Zhang
,
J.
,
2017
, “
Review and Analysis of Fuel Cell-Based, Micro-Cogeneration for Residential Applications: Current State and Future Opportunities
,”
Sci. Technol. Built Environ.
,
23
(
8
), pp.
1224
1243
. 10.1080/23744731.2017.1296301
5.
Shao
,
Z.
,
Zhou
,
W.
, and
Zhu
,
Z.
,
2012
, “
Advanced Synthesis of Materials for Intermediate-Temperature Solid Oxide Fuel Cells
,”
Prog. Mater. Sci.
,
57
(
4
), pp.
804
874
. 10.1016/j.pmatsci.2011.08.002
6.
Milcarek
,
R. J.
,
Wang
,
K.
,
Garrett
,
M. J.
, and
Ahn
,
J.
,
2016
, “
Performance Investigation of Dual Layer Yttria-Stabilized Zirconia–Samaria-Doped Ceria Electrolyte for Intermediate Temperature Solid Oxide Fuel Cells
,”
ASME J. Electrochem. Energy Convers. Storage
,
13
(
1
), p.
011002
. 10.1115/1.4032708
7.
Wang
,
K.
,
Zeng
,
P.
, and
Ahn
,
J.
,
2011
, “
High Performance Direct Flame Fuel Cell Using a Propane Flame
,”
Proc. Combust. Inst.
,
33
(
2
), pp.
3431
3437
. 10.1016/j.proci.2010.07.047
8.
U.S. Department of Energy: Office of Energy Efficiency & Renewable Energy
,
2016
,
Comparison of Fuel Cell Technologies
, Office of Energy Efficiency & Renewable Energy, http://energy.gov/eere/fuelcells/downloads/comparison-fuel-cell-technologies-fact-sheet, Accessed July 15, 2020.
9.
Calise
,
F.
,
Restucccia
,
G.
, and
Sammes
,
N.
,
2010
, “
Experimental Analysis of Micro-Tubular Solid Oxide Fuel Cell Fed by Hydrogen
,”
J. Power Sources
,
195
(
4
), pp.
1163
1170
. 10.1016/j.jpowsour.2009.08.064
10.
Mai
,
A.
,
Haanappel
,
V.
,
Tietz
,
F.
, and
Stover
,
D.
,
2006
, “
Ferrite-Based Perovskites as Cathode Materials for Anode-Supported Solid Oxide Fuel Cells: Part II. Influence of the CGO Interlayer
,”
Solid State Ionics
,
177
(
19–25
), pp.
2103
2107
. 10.1016/j.ssi.2005.12.010
11.
Milcarek
,
R. J.
,
Nakamura
,
H.
,
Tezuka
,
T.
,
Maruta
,
K.
, and
Ahn
,
J.
,
2020
, “
Investigation of Microcombustion Reforming of Ethane/Air and Micro-Tubular Solid Oxide Fuel Cells
,”
J. Power Sources
,
450
, p.
227606
. 10.1016/j.jpowsour.2019.227606
12.
Shi
,
H.
,
Yang
,
G.
,
Liu
,
Z.
,
Zhang
,
G.
,
Ran
,
R.
,
Shao
,
Z.
,
Zhou
,
W.
, and
Jin
,
W.
,
2012
, “
High Performance Tubular Solid Oxide Fuel Cells With BSCF Cathode
,”
Int. J. Hydrogen Energy
,
37
(
17
), pp.
13022
13029
. 10.1016/j.ijhydene.2012.05.061
13.
Duan
,
Z.
,
Yang
,
M.
,
Yan
,
A.
,
Hou
,
Z.
,
Dong
,
Y.
,
Chong
,
Y.
,
Cheng
,
M.
, and
Yang
,
W.
,
2006
, “
Ba0.5Sr0.5Co0.8Fe0.2O3-δ as a Cathode for IT-SOFCs With a GDC Interlayer
,”
J. Power Sources
,
160
(
1
), pp.
57
64
. 10.1016/j.jpowsour.2006.01.092
14.
Wang
,
K.
,
Ran
,
R.
,
Zhou
,
W.
,
Gu
,
H.
,
Shao
,
Z.
, and
Ahn
,
J.
,
2008
, “
Properties and Performance of Ba0.5Sr0.5Co0.8Fe0.2O3-δ + Sm0.2Ce0.8O1.9 Composite Cathode
,”
J. Power Sources
,
179
(
1
), pp.
60
68
. 10.1016/j.jpowsour.2007.12.051
15.
Milcarek
,
R. J.
,
Wang
,
K.
,
Falkenstein-Smith
,
R. L.
, and
Ahn
,
J.
,
2016
, “
Performance Variation With SDC Buffer Layer Thickness
,”
Int. J. Hydrogen Energy
,
41
(
22
), pp.
9500
9506
. 10.1016/j.ijhydene.2016.04.113
16.
Shao
,
Z.
,
Haile
,
S. M.
,
Ahn
,
J.
,
Ronney
,
P. D.
,
Zhan
,
Z.
, and
Barnett
,
S. A.
,
2005
, “
A Thermally Self-Sustained Micro Solid-Oxide Fuel-Cell Stack With High Power Density
,”
Nature
,
435
(
7043
), pp.
795
798
. 10.1038/nature03673
17.
Simner
,
S.
,
Anderson
,
M.
,
Bonnett
,
J.
, and
Stevenson
,
J.
,
2004
, “
Enhanced Low Temperature Sintering of (Sr, Cu)-Doped Lanthanum Ferrite SOFC Cathodes
,”
Solid State Ionics
,
175
(
1–4
), pp.
79
81
. 10.1016/j.ssi.2004.09.016
18.
Martínez-Amesti
,
A.
,
Larrañaga
,
A.
,
Rodríguez-Martínez
,
L. M.
,
Aguayo
,
A. T.
,
Pizarro
,
J. L.
,
,
M. L.
,
Laresgoiti
,
A.
, and
Arriortua
,
M. I.
,
2008
, “
Reactivity Between La(Sr)FeO3 Cathode, Doped CeO2 Interlayer and Yttria-Stabilized Zirconia Electrolyte for Solid Oxide Fuel Cell Applications
,”
J. Power Sources
,
185
(
1
), pp.
401
410
. 10.1016/j.jpowsour.2008.06.049
19.
Constantin
,
G.
,
Rossignol
,
C.
,
Briois
,
P.
,
Billard
,
A.
,
Dessemond
,
L.
, and
Djurado
,
E.
,
2013
, “
Efficiency of a Dense Thin CGO Buffer Layer for Solid Oxide Fuel Cell Operating at Intermediate Temperature
,”
Solid State Ionics
,
249–250
, pp.
98
104
. 10.1016/j.ssi.2013.07.004
20.
Charojrochkul
,
S.
,
Choy
,
K.
, and
Steele
,
B.
,
1999
, “
Cathode/Electrolyte Systems for Solid Oxide Fuel Cells Fabricated Using Flame Assisted Vapour Deposition Technique
,”
Solid State Ionics
,
121
(
1–4
), pp.
107
113
. 10.1016/S0167-2738(98)00536-0
21.
Nguyen
,
T. L.
,
Kobayashi
,
K.
,
Honda
,
T.
,
Iimura
,
Y.
,
Kato
,
K.
,
Neghisi
,
A.
,
Nozaki
,
K.
,
Tappero
,
F.
,
Sasaki
,
K.
,
Shirahama
,
H.
,
Ota
,
K.
,
Dokiya
,
M.
, and
Kato
,
T.
,
2004
, “
Preparation and Evaluation of Doped Ceria Interlayer on Supported Stabilized Zirconia Electrolyte SOFCs by Wet Ceramic Processes
,”
Solid State Ionics
,
174
(
1–4
), pp.
163
174
. 10.1016/j.ssi.2004.06.017
22.
Martinez-Amesti
,
A.
,
Larranaga
,
A.
,
Rodriguez-Martinez
,
L. M.
,
No
,
M. L.
,
Pizarro
,
J. L.
,
Laresgoiti
,
A.
, and
Arriortua
,
M. I.
,
2009
, “
Influence of SDC-YSZ Contact at Different Atmospheres in SOFC Operation and Processing Conditions
,”
J. Electrochem. Soc.
,
156
(
7
), pp.
B856
B861
. 10.1149/1.3133244
23.
Martínez-Amesti
,
A.
,
Larrañaga
,
A.
,
Rodríguez-Martínez
,
L. M.
,
,
M. L.
,
Pizarro
,
J. L.
,
Laresgoiti
,
A.
, and
Arriortua
,
M. I.
,
2009
, “
Chemical Compatibility Between YSZ and SDC Sintered at Different Atmospheres for SOFC Applications
,”
J. Power Sources
,
192
(
1
), pp.
151
157
. 10.1016/j.jpowsour.2009.02.011
24.
Uhlenbruck
,
S.
,
Moskalewicz
,
T.
,
Jordan
,
N.
,
Penkalla
,
H. J.
, and
Buchkremer
,
H. P.
,
2009
, “
Element Interdiffusion at Electrolyte-Cathode Interfaces in Ceramic High-Temperature Fuel Cells
,”
Solid State Ionics
,
180
(
4–5
), pp.
418
423
. 10.1016/j.ssi.2009.01.014
25.
Lu
,
Z.
,
Zhou
,
X.
,
Fisher
,
D.
,
Templeton
,
J.
,
Stevenson
,
J.
,
Wu
,
N.
, and
Ignatiev
,
A.
,
2010
, “
Enhanced Performance of an Anode-Supported YSZ Thin Electrolyte Fuel Cell With a Laser-Deposited Sm0.2Ce0.8O1.9 Interlayer
,”
Electrochem. Commun.
,
12
(
2
), pp.
179
182
. 10.1016/j.elecom.2009.11.015
26.
Kao
,
W.-X.
,
Lee
,
M.-C.
,
Lin
,
T.-N.
,
Wang
,
C.-H.
, and
Chang
,
Y.-C.
,
2010
, “
Fabrication and Characterization of a Ba0.5Sr0.5Co0.8Fe0.2O3−δ—Gadolinia-Doped Ceria Cathode for an Anode-Supported Solid-Oxide Fuel Cell
,”
J. Power Sources
,
195
(
8
), pp.
2220
2223
. 10.1016/j.jpowsour.2009.10.057
27.
Mesguich
,
D.
,
Aymonier
,
C.
,
Bassat
,
J. M.
,
Mauvy
,
F.
,
You
,
E.
, and
Watkins
,
J. J.
,
2011
, “
Low-Temperature Deposition of Undoped Ceria Thin Films in ScCO2 as Improved Interlayers for IT-SOFC
,”
Chem. Mater.
,
23
(
24
), pp.
5323
5330
. 10.1021/cm2012846
28.
Oh
,
E. O.
,
Whang
,
C. M.
,
Lee
,
Y. R.
,
Park
,
S. Y.
,
Prasad
,
D. H.
,
Yoon
,
K. J.
,
Son
,
J. W.
,
Lee
,
J. H.
, and
Lee
,
H. W.
,
2012
, “
Extremely Thin Bilayer Electrolyte for Solid Oxide Fuel Cells (SOFCs) Fabricated by Chemical Solution Deposition (CSD)
,”
Adv. Mater.
,
24
(
25
), pp.
3373
3377
. 10.1002/adma.201200505
29.
Li
,
C.
,
Shi
,
H.
,
Ran
,
R.
,
Su
,
C.
, and
Shao
,
Z.
,
2013
, “
Thermal Inkjet Printing of Thin-Film Electrolytes and Buffering Layers for Solid Oxide Fuel Cells With Improved Performance
,”
Int. J. Hydrogen Energy
,
38
(
22
), pp.
9310
9319
. 10.1016/j.ijhydene.2013.05.025
30.
Chen
,
D.
,
Yang
,
G.
,
Shao
,
Z.
, and
Ciucci
,
F.
,
2013
, “
Nanoscaled Sm-Doped CeO2 Buffer Layers for Intermediate-Temperature Solid Oxide Fuel Cells
,”
Electrochem. Commun.
,
35
, pp.
131
134
. 10.1016/j.elecom.2013.08.017
31.
Moreno
,
B.
,
Fernández-González
,
R.
,
Jurado
,
J. R.
,
Makradi
,
A.
,
Nuñez
,
P.
, and
Chinarro
,
E.
,
2014
, “
Fabrication and Characterization of Ceria-Based Buffer Layers for Solid Oxide Fuel Cells
,”
Int. J. Hydrogen Energy
,
39
(
10
), pp.
5433
5439
. 10.1016/j.ijhydene.2014.01.061
32.
Wang
,
Z.
,
Huang
,
X.
,
Lv
,
Z.
,
Zhang
,
Y.
,
Wei
,
B.
,
Zhu
,
X.
,
Wang
,
Z.
, and
Liu
,
Z.
,
2015
, “
Preparation and Performance of Solid Oxide Fuel Cells With YSZ/SDC Bilayer Electrolyte
,”
Ceram. Int.
,
41
(
3
), pp.
4410
4415
. 10.1016/j.ceramint.2014.11.131
33.
Szász
,
J.
,
Wankmüller
,
F.
,
Wilde
,
V.
,
Störmer
,
H.
,
Gerthsen
,
D.
,
Menzler
,
N. H.
, and
Ivers-Tiffée
,
E.
,
2015
, “
High-Performance Cathode/Electrolyte Interfaces for SOFC
,”
ECS Trans.
,
68
(
1
), pp.
763
771
. 10.1149/06801.0763ecst
34.
Tsoga
,
A.
,
Gupta
,
A.
,
Naoumidis
,
A.
, and
Nikolopoulos
,
P.
,
2000
, “
Gadolinia-Doped Ceria and Yttria Stabilized Zirconia Interfaces: Regarding Their Application for SOFC Technology
,”
Acta Mater.
,
48
(
18–19
), pp.
4709
4714
. 10.1016/S1359-6454(00)00261-5
35.
Simner
,
S. P.
,
Bonnett
,
J. F.
,
Canfield
,
N. L.
,
Meinhardt
,
K. D.
,
Shelton
,
J. P.
,
Sprenkle
,
V. L.
, and
Stevenson
,
J. W.
,
2003
, “
Development of Lanthanum Ferrite SOFC Cathodes
,”
J. Power Sources
,
113
(
1
), pp.
1
10
. 10.1016/S0378-7753(02)00455-X
36.
Jordan
,
N.
,
Assenmacher
,
W.
,
Uhlenbruck
,
S.
,
Haanappel
,
V. A. C.
,
Buchkremer
,
H. P.
,
Stöver
,
D.
, and
Mader
,
W.
,
2008
, “
Ce0.8Gd0.2O2—Δ protecting Layers Manufactured by Physical Vapor Deposition for IT-SOFC
,”
Solid State Ionics
,
179
(
21–26
), pp.
919
923
. 10.1016/j.ssi.2007.12.008
37.
Shri Prakash
,
B.
,
Pavitra
,
R.
,
Senthil Kumar
,
S.
, and
Aruna
,
S. T.
,
2018
, “
Electrolyte Bi-Layering Strategy to Improve the Performance of an Intermediate Temperature Solid Oxide Fuel Cell: A Review
,”
J. Power Sources
,
381
, pp.
136
155
. 10.1016/j.jpowsour.2018.02.003
38.
López-Robledo
,
M. J.
,
Laguna-Bercero
,
M. A.
,
Silva
,
J.
,
Orera
,
V. M.
, and
Larrea
,
A.
,
2015
, “
Electrochemical Performance of Intermediate Temperature Micro-Tubular Solid Oxide Fuel Cells Using Porous Ceria Barrier Layers
,”
Ceram. Int.
,
41
(
6
), pp.
7651
7660
. 10.1016/j.ceramint.2015.02.093
39.
Hashimoto
,
S.
,
Nishino
,
H.
,
Liu
,
Y.
,
Asano
,
K.
,
Mori
,
M.
,
Funahashi
,
Y.
, and
Fujishiro
,
Y.
,
2008
, “
The Electrochemical Cell Temperature Estimation of Micro-Tubular SOFCs During the Power Generation
,”
J. Power Sources
,
181
(
2
), pp.
244
250
. 10.1016/j.jpowsour.2007.12.104
40.
Yang
,
C.
,
Ren
,
C.
,
Yu
,
L.
, and
Jin
,
C.
,
2013
, “
High Performance Intermediate Temperature Micro-Tubular SOFCs With Ba0.9Co0.7Fe0.2Nb0.1O3-δ as Cathode
,”
Int. J. Hydrogen Energy
,
38
(
35
), pp.
15348
15353
. 10.1016/j.ijhydene.2013.09.080
41.
Wu
,
L.
,
Wang
,
S.
,
Wang
,
S.
, and
Xia
,
C.
,
2013
, “
Enhancing the Performance of Doped Ceria Interlayer for Tubular Solid Oxide Fuel Cells
,”
J. Power Sources
,
240
, pp.
241
244
. 10.1016/j.jpowsour.2013.04.007
42.
Dhir
,
A.
, and
Kendall
,
K.
,
2008
, “
Microtubular SOFC Anode Optimisation for Direct Use on Methane
,”
J. Power Sources
,
181
(
2
), pp.
297
303
. 10.1016/j.jpowsour.2007.11.005
43.
Torrell
,
M.
,
Morata
,
A.
,
Kayser
,
P.
,
Kendall
,
M.
,
Kendall
,
K.
, and
Tarancón
,
A.
,
2015
, “
Performance and Long Term Degradation of 7 W Micro-Tubular Solid Oxide Fuel Cells for Portable Applications
,”
J. Power Sources
,
285
, pp.
439
448
. 10.1016/j.jpowsour.2015.03.030
44.
Akhtar
,
N.
,
Decent
,
S. P.
,
Loghin
,
D.
, and
Kendall
,
K.
,
2009
, “
Mixed-Reactant, Micro-Tubular Solid Oxide Fuel Cells: An Experimental Study
,”
J. Power Sources
,
193
(
1
), pp.
39
48
. 10.1016/j.jpowsour.2009.01.032
45.
Howe
,
K. S.
,
Thompson
,
G. J.
, and
Kendall
,
K.
,
2011
, “
Micro-Tubular Solid Oxide Fuel Cells and Stacks
,”
J. Power Sources
,
196
(
4
), pp.
1677
1686
. 10.1016/j.jpowsour.2010.09.043
46.
Milcarek
,
R. J.
,
Garrett
,
M. J.
,
Welles
,
T. S.
, and
Ahn
,
J.
,
2018
, “
Performance Investigation of a Micro-Tubular Flame-Assisted Fuel Cell Stack With 3,000 Rapid Thermal Cycles
,”
J. Power Sources
,
394
, pp.
86
93
. 10.1016/j.jpowsour.2018.05.060
47.
Ruder
,
A.
,
Buchkremer
,
H. P.
,
Jansen
,
H.
,
Malléner
,
W.
, and
Stöver
,
D.
,
1992
, “
Wet Powder Spraying—A Process for the Production of Coatings
,”
Surf. Coat. Technol.
,
53
(
1
), pp.
71
74
. 10.1016/0257-8972(92)90105-J
48.
Zhou
,
W.
,
Shi
,
H.
,
Ran
,
R.
,
Cai
,
R.
,
Shao
,
Z.
, and
Jin
,
W.
,
2008
, “
Fabrication of an Anode-Supported Yttria-Stabilized Zirconia Thin Film for Solid-Oxide Fuel Cells via Wet Powder Spraying
,”
J. Power Sources
,
184
(
1
), pp.
229
237
. 10.1016/j.jpowsour.2008.06.021
49.
Shi
,
H.
,
Zhou
,
W.
,
Ran
,
R.
, and
Shao
,
Z.
,
2010
, “
Comparative Study of Doped Ceria Thin-Film Electrolytes Prepared by Wet Powder Spraying With Powder Synthesized via Two Techniques
,”
J. Power Sources
,
195
(
2
), pp.
393
401
. 10.1016/j.jpowsour.2009.07.056
50.
Milcarek
,
R. J.
,
Garrett
,
M. J.
, and
Ahn
,
J.
,
2017
, “
Micro-Tubular Flame-Assisted Fuel Cells
,”
J. Fluid Sci. Technol.
,
12
(
3
), pp.
JFST0021
JFST0021
. 10.1299/jfst.2017jfst0021
51.
Hsieh
,
W. S.
,
Lin
,
P.
, and
Wang
,
S. F.
,
2013
, “
Fabrication of Electrolyte Supported Micro-Tubular SOFCs Using Extrusion and Dip-Coating
,”
Int. J. Hydrogen Energy
,
38
(
6
), pp.
2859
2867
. 10.1016/j.ijhydene.2012.12.056
52.
Milcarek
,
R. J.
, and
Ahn
,
J.
,
2019
, “
Micro-Tubular Flame-Assisted Fuel Cells Running Methane, Propane and Butane: On Soot, Efficiency and Power Density
,”
Energy
,
169
, pp.
776
782
. 10.1016/j.energy.2018.12.098
53.
Milcarek
,
R. J.
,
Garrett
,
M. J.
, and
Ahn
,
J.
,
2016
, “
Micro-Tubular Flame-Assisted Fuel Cell Stacks
,”
Int. J. Hydrogen Energy
,
41
(
46
), pp.
21489
21496
. 10.1016/j.ijhydene.2016.09.005
54.
Milcarek
,
R. J.
,
Garrett
,
M. J.
,
Baskaran
,
A.
, and
Ahn
,
J.
,
2016
, “
Combustion Characterization and Model Fuel Development for Micro-Tubular Flame-Assisted Fuel Cells
,”
J. Vis. Exp.
, (
116
), p.
e54638
. 10.3791/54638
55.
Hsieh
,
Y. D.
,
Chan
,
Y. H.
, and
Shy
,
S. S.
,
2015
, “
Effects of Pressurization and Temperature on Power Generating Characteristics and Impedances of Anode-Supported and Electrolyte-Supported Planar Solid Oxide Fuel Cells
,”
J. Power Sources
,
299
, pp.
1
10
. 10.1016/j.jpowsour.2015.08.080
You do not currently have access to this content.