Abstract

The authors develop a small and simple steam-reforming reactor in a home-use size for such various heavy-hydrocarbons fuels as n-octane, n-decane, n-tetradecane, and n-hexadecane in addition to n-dodecane and measure the inside-temperature profile and the molar fractions of main-gas components such as H2, CH4, CO, and CO2. This reactor is designed only for laboratory-test use, not for a commercial product. As a result, the authors successfully achieve suitable inside-temperature profiles, namely, temperature almost linearly increases in the downstream direction along a reactor, under two conditions such as 600–950 K at the upstream end of the catalyst-layer bed in the reactor and less than 1070 K everywhere in the reactor. And, the authors reveal the effects of the liquid-hourly space velocity (LHSV) upon the molar fractions, a conversion ratio and reforming efficiencies for various heavy-hydrocarbons fuels. All the molar fractions, which agree well with thermochemical-equilibrium theory, are approximately independent of LHSV. The conversion ratio is about 90% for LHSV ≤ 0.6 h−1 and monotonically decreases with increasing LHSV for LHSV > 0.6 h−1. Then, each reforming efficiency always attains the maximum for LHSV ≈ 0.6 h−1 being independent of fuels. This suggests the common upper limit of LHSV for practically suitable operation.

References

1.
Hickman
,
D. A.
, and
Schmidt
,
L. D.
,
1992
, “
Synthesis Gas Formation by Direct Oxidation of Methane Over Pt Monoliths
,”
J. Catal.
,
138
(
1
), pp.
267
282
. 10.1016/0021-9517(92)90022-A
2.
Aghalayam
,
P.
,
Park
,
Y. K.
, and
Vlachos
,
D. G.
,
2000
, “
Partial Oxidation of Light Alkanes in Short Contact Time Microreactors
,”
Catalysis
,
15
, pp.
98
137
. 10.1039/9781847553270-00098
3.
York
,
A. P. E.
,
Xiao
,
T.
, and
Green
,
M. L. H.
,
2003
, “
Brief Overview of the Partial Oxidation of Methane to Synthesis Gas
,”
Top. Catal.
,
22
(
3–4
), pp.
345
358
. 10.1023/A:1023552709642
4.
Donazzi
,
A.
,
Beretta
,
A.
,
Groppi
,
G.
, and
Forzatti
,
P.
,
2008
, “
Catalytic Partial Oxidation of Methane Over a 4% Rh/α-Al2O3 Catalyst Part I: Kinetic Study in Annular Reactor
,”
J. Catal.
,
255
(
2
), pp.
241
258
. 10.1016/j.jcat.2008.02.009
5.
Matsumoto
,
H.
,
2003
, “High-Concentration-Hydrogen Production Technology for Kerosene,”
Suisoriyougijyutsusyusei
,
NTS
,
Tokyo
, pp.
120
137
.
6.
Hirata
,
K.
,
Sono
,
Y.
,
Okuhigashi
,
Y.
,
Shinoki
,
T.
, and
Funaki
,
J.
,
2010
, “
Hydrogen Production From Ethanol by Ethanol-Steam Reforming With Cu/ZnO/Al2O3
,”
Trans. Jpn. Soc. Mech. Eng. B
,
76
(
763
), pp.
412
414
. 10.1299/kikaib.76.763_412
7.
Shinoki
,
T.
,
Ota
,
K.
,
Sono
,
Y.
,
Okuhigashi
,
Y.
,
Funaki
,
J.
, and
Hirata
,
K.
,
2011
, “
Hydrogen Production Using a Steam-Reforming Reactor With Cu/ZnO/Al2O3 and Ru/Al2O3 Catalysts
,”
J. Power Energy Syst.
,
5
(
3
), pp.
218
228
. 10.1299/jpes.5.218
8.
Shinoki
,
T.
,
Maeda
,
T.
,
Funaki
,
J.
, and
Hirata
,
K.
,
2012
, “
Effects of LHSV and Reaction Temperature Upon Ethanol-Steam-Reforming Performance
,”
Trans. Jpn. Soc. Mech. Eng. B
,
78
(
787
), pp.
415
419
. 10.1299/kikaib.78.415
9.
Hirata
,
K.
,
Katagiri
,
K.
,
Maeda
,
T.
,
Shinoki
,
T.
, and
Funaki
,
J.
,
2013
, “
Hydrogen Production by Ethanol-Steam Reforming Using Cu/ZnO/Al2O3 Catalyst
,”
Trans. Jpn. Soc. Mech. Eng. B
,
79
(
808
), pp.
2587
2591
. 10.1299/kikaib.79.2587
10.
Kawanabe
,
H.
, and
Shioji
,
M.
,
2005
, “
Effect of Hydrogen Addition to Hydrocarbon Fuels on Combustion Characteristics
,”
Trans. Jpn. Soc. Mech. Eng. B
,
71
(
704
), pp.
1177
1182
. 10.1299/kikaib.71.1177
11.
Shinagawa
,
T.
,
Suzuki
,
M.
,
Shimizu
,
R.
, and
Mogi
,
K.
,
2007
, “
Feasibility Study of Onboard Hydrogenated System on Gasoline Engine
,”
Proc. Soc. Autom. Eng. Jpn.
,
38
(
1
), pp.
103
108
.
12.
Ariyoshi
,
M.
,
Fukui
,
Y.
,
Kusaka
,
J.
, and
Daisho
,
Y.
,
2010
, “
The Effect of Dilution With CO2, N2, H2O and H2 on Spark-Ignited Combustion
,”
Proceedings of the 48th Symposium on Combustion, Combustion Society of Japan
,
Dec., Fukuoka
, pp.
244
245
.
13.
Shimada
,
A.
,
Ishikawa
,
T.
,
Manda
,
T.
,
Takayama
,
M.
, and
Kajitani
,
S.
,
2010
, “
Improvement of Thermal Efficiency Using Hydrogen in Gasoline Engine
,”
Trans. Jpn. Soc. Mech. Eng. B
,
76
(
783
), pp.
394
396
. 10.1299/kikaib.76.763_394
14.
Ashida
,
K.
,
Maeda
,
H.
,
Araki
,
T.
,
Hoshino
,
M.
,
Hiraya
,
K.
,
Izumi
,
T.
, and
Yasuoka
,
M.
,
2015
, “
Study of an On-Board Fuel Reformer and Hydrogen-Added EGR Combustion in a Gasoline Engine
,”
SAE Int. J. Fuels Lubr.
,
8
(
2
), pp.
358
366
. 10.4271/2015-01-0902
15.
Funami
,
S.
,
Sasaki
,
J.
,
Tuchida
,
J.
,
Tanaka
,
K.
, and
Konno
,
M.
,
2016
, “
Effect of Hydrogen Addition on a Lean Burn SI Engine
,”
Conference (Autumn) Proceedings of the Society of Automotive Engineers of Japan
,
Sapporo, Japan
,
Oct.
, No. 144, pp.
751
756
.
16.
Japanese Industrial Standard K 2202
,
2012
, “Motor Gasoline,”
Japanese Standards Association
, 12th ed.
Tokyo
, pp.
1
5
(in Japanese).
17.
Japanese Industrial Standard K 2203
,
2009
, “Kerosine,”
Japanese Standards Association
, 9th ed.,
Tokyo
, pp.
1
6
(in Japanese).
18.
Japanese Industrial Standard K 2204
,
2007
, “Diesel Fuel,”
Japanese Standards Association
, 7th ed.,
Tokyo
, pp.
1
4
(in Japanese).
19.
Suzuki
,
T.
,
Iwami
,
H.
, and
Yoshinari
,
T.
,
2000
, “
Steam Reforming of Kerosene on Ru/Al2O3 Catalyst to Yield Hydrogen
,”
Int. J. Hydrogen Energy
,
25
(
2
), pp.
119
126
. 10.1016/S0360-3199(99)00014-2
20.
Fukunaga
,
T.
,
Katsuno
,
H.
,
Matsumoto
,
H.
,
Takahashi
,
O.
, and
Akai
,
Y.
,
2003
, “
Development of Kerosene Fuel Processing System for PEFC
,”
Catal. Today
,
84
(
3–4
), pp.
197
200
. 10.1016/S0920-5861(03)00274-8
21.
Kobori
,
Y.
,
Matsumoto
,
T.
,
Anzai
,
I.
,
Ueno
,
S.
, and
Oishi
,
Y.
,
2003
, “Kerosene Reforming Catalyst for Fuel Cell Application –Kinetic and Modeling Analysis of Steam Reforming,”
Science and Technology in Catalysis 2002
,
Kodansha Ltd.
,
Tokyo
, pp.
477
478
.
22.
Saito
,
K.
, and
Kisen
,
T.
,
2003
, “
Development of Kerosene Reforming Technology for Fuel Cell
,”
Idemitsu Giho
,
46
(
1
), pp.
51
57
.
23.
Liu
,
D. J.
,
Kaun
,
D.
,
Liao
,
H. K.
, and
Ahmed
,
S.
,
2004
, “
Characterization of Kilowatt-Scale Autothermal Reformer for Production of Hydrogen From Heavy Hydrocarbons
,”
Int. J. Hydrogen Energy
,
29
(
10
), pp.
1035
1046
. 10.1016/j.ijhydene.2003.11.009
24.
Koseki
,
H.
,
2004
, “
Flame Stability Limit and Exhaust Emissions of Low Calorific Fuel Combustion in Turbulent Diffusion Combustor for a Small-Scale Fuel Cell
,”
JSME Int. J.
,
47
(
2
), pp.
221
227
. 10.1299/jsmeb.47.221
25.
Muramoto
,
T.
,
Nariai
,
K.
,
Ohara
,
H.
, and
Kamata
,
H.
,
2009
, “
Durability of Ru/CeO2/γ-Al2O3 Catalyst for Steam Reforming of Dodecane
,”
J. Jpn. Pet. Inst.
,
52
(
3
), pp.
108
113
. 10.1627/jpi.52.108
26.
Yoon
,
S.
,
Bae
,
J.
,
Kim
,
S.
, and
Yoo
,
Y. S.
,
2009
, “
Self-sustained Operation of a kWe-Class Kerosene-Reforming Processor for Solid Oxide Fuel Cells
,”
J. Power Sources
,
192
(
2
), pp.
360
366
. 10.1016/j.jpowsour.2009.02.084
27.
Piavis
,
W.
,
Turn
,
S.
, and
Mousavi
,
S. M. A.
,
2015
, “
Non-thermal Gliding-Arc Plasma Reforming of Dodecane and Hydroprocessed Renewable Diesel
,”
Int. J. Hydrogen Energy
,
40
(
39
), pp.
13295
13305
. 10.1016/j.ijhydene.2015.07.157
28.
Iida
,
H.
,
Onuki
,
N.
,
Numa
,
T.
, and
Igarashi
,
A.
,
2016
, “
Steam Reforming of Dodecane and Toluene Over Ru/12SrO-7Al2O3 (S12A7) Catalysts
,”
Fuel Process. Technol.
,
142
, pp.
397
402
. 10.1016/j.fuproc.2015.09.026
29.
Shinoki
,
T.
,
Fujimoto
,
Y.
,
Kataoka
,
F.
,
Tanigawa
,
H.
,
Funaki
,
J.
, and
Hirata
,
K.
,
2011
, “
Hydrogen Production by a Reactor for Heavy Hydrocarbons
,”
Trans. Jpn. Soc. Mech. Eng. B
,
77
(
776
), pp.
939
943
. 10.1299/kikaib.77.939
30.
Shinoki
,
T.
,
Fujimoto
,
Y.
,
Tanigawa
,
H.
,
Funaki
,
J.
, and
Hirata
,
K.
,
2012
, “
The Effects of LHSV and Reaction Temperature upon Steam Reforming for Heavy Hydrocarbons
,”
Trans. Jpn. Soc. Mech. Eng. B
,
78
(
787
), pp.
420
424
. 10.1299/kikaib.78.420
31.
Hirata
,
K.
,
Nakamori
,
M.
,
Tanigawa
,
K.
,
Kataoka
,
F.
,
Fujimoto
,
Y.
,
Shinoki
,
T.
,
Tanigawa
,
H.
, and
Funaki
,
J.
,
2013
, “
Hydrogen Production by a Steam-Reformer for Heavy Hydrocarbons
,”
J. Power Energy Syst.
,
7
(
1
), pp.
49
63
. 10.1299/jpes.7.49
32.
Shinoki
,
T.
,
Fujimoto
,
Y.
,
Kamizono
,
M.
,
Maeda
,
T.
,
Katagiri
,
K.
,
Kusumi
,
M.
,
Tanigawa
,
H.
,
Funaki
,
J.
, and
Hirata
,
K.
,
2018
, “
On Performance Factors of a Steam-Reforming Reacter for Dodecane
,”
Trans. Jpn. Soc. Mech. Eng. B
,
84
(
857
), pp.
1
13
.http://dx.doi.org/10.1299/transjsme.17-00384
33.
Vita
,
A.
,
Italiano
,
C.
,
Fabiano
,
C.
,
Pino
,
L.
,
Laganà
,
M.
, and
Recupero
,
V.
,
2016
, “
Hydrogen-rich Gas Production by Steam Reforming of n-Dodecane: Part I: Catalytic Activity of Pt/CeO2 Catalysts in Optimized Bed Configuration
,”
Appl. Catal. B
,
199
, pp.
350
360
. 10.1016/j.apcatb.2016.06.042
34.
Uematsu
,
H.
,
2004
,
Fuel-Cell Generation System and Thermal Balance
,
Ohm-sha
,
Tokyo
, pp.
71
89
.
35.
ISO 16110-2
,
2010
, “
Hydrogen Generators Using Fuel Processing Technologies—Part2: Test Methods for Performance
,”
International Organization for Standard
,
Geneva
, pp.
33
34
.
You do not currently have access to this content.