Abstract

The mass transfer in the cathode electrode plays an important role in operating Li-O2 batteries. In this study, a two-dimensional, transient, and isothermal model is developed to investigate the mass transfer in discharging Li-O2 batteries. This model simulates the discharge performance of Li-O2 batteries with various electrolyte concentrations (0.1−1.0M) at various current densities (0.1, 0.3, and 0.5 mA/cm2). The O2 diffusivity and the ionic conductivity and diffusivity of Li+ are altered as the bis(trifluoromethane)sulfonimide lithium salt (LiTFSI) concentration in the electrolyte of tetraethylene glycol dimethyl ether (TEGDME) changes. The distributions of O2, Li+, and lithium peroxide (Li2O2) in the cathode electrode after discharge are calculated using this model. Modeling results show that when the concentration decreases from 0.5 to 0.25M, the discharge capacity of Li-O2 sharply drops at various current densities. The mass transfer of Li+ determines the discharge capacity of Li-O2 batteries with dilute electrolytes (≤0.25 M). In contrast, the O2 supply is dominant regarding the discharge capacity when the electrolyte concentration is larger than 0.5M. The highest discharge capacity (e.g., 6.09 mAh at 0.1 mA/cm2) is achieved using 0.5M electrolyte since it balances mass transfer of O2 and Li+.

References

References
1.
Kim
,
H. C.
,
Wallington
,
T. J.
,
Arsenault
,
R.
,
Bae
,
C.
,
Ahn
,
S.
, and
Lee
,
J.
,
2016
, “
Cradle-to-Gate Emissions From a Commercial Electric Vehicle Li-Ion Battery: A Comparative Analysis
,”
Environ. Sci. Technol.
,
50
(
14
), pp.
7715
7722
. 10.1021/acs.est.6b00830
2.
Aurbach
,
D.
,
McCloskey
,
B. D.
,
Nazar
,
L. F.
, and
Bruce
,
P. G.
,
2016
, “
Advances in Understanding Mechanisms Underpinning Lithium–Air Batteries
,”
Nat. Energy
,
1
(
9
), p.
16128
. 10.1038/nenergy.2016.128
3.
Agostini
,
M.
,
Brutti
,
S.
, and
Hassoun
,
J.
,
2016
, “
High Voltage Li-Ion Battery Using Exfoliated Graphite/Graphene Nanosheets Anode
,”
ACS Appl. Mater. Interfaces
,
8
(
17
), pp.
10850
10857
. 10.1021/acsami.6b01407
4.
Liu
,
B.
,
Xu
,
W.
,
Yan
,
P.
,
Sun
,
X.
,
Bowden
,
M. E.
,
Read
,
J.
,
Qian
,
J.
,
Mei
,
D.
,
Wang
,
C. M.
, and
Zhang
,
J. G.
,
2016
, “
Enhanced Cycling Stability of Rechargeable Li–O2 Batteries Using High-Concentration Electrolytes
,”
Adv. Funct. Mater.
,
26
(
4
), pp.
605
613
. 10.1002/adfm.201503697
5.
Li
,
X.
,
Huang
,
J.
, and
Faghri
,
A.
,
2016
, “
A Critical Review of Macroscopic Modeling Studies on Li O2 and Li–Air Batteries Using Organic Electrolyte: Challenges and Opportunities
,”
J. Power Sources
,
332
, pp.
420
446
. 10.1016/j.jpowsour.2016.09.127
6.
Kundu
,
D.
,
Black
,
R.
,
Adams
,
B.
,
Harrison
,
K.
,
Zavadil
,
K.
, and
Nazar
,
L. F.
,
2015
, “
Nanostructured Metal Carbides for Aprotic Li–O2 Batteries: New Insights Into Interfacial Reactions and Cathode Stability
,”
J. Phys. Chem. Lett.
,
6
(
12
), pp.
2252
2258
. 10.1021/acs.jpclett.5b00721
7.
Jang
,
Y. J.
,
Nguyen
,
T.-T. H.
,
Park
,
H.
,
Chae
,
S. A.
,
Cho
,
S. A.
,
Jang
,
Y. H.
,
An
,
S.
,
Han
,
O. H.
,
Kang
,
K.
, and
Oh
,
D.
,
2019
, “
Investigation of Li-O2 Battery Performance Integrated With RuO2 Inverse Opal Cathodes in DMSO
,”
ACS Appl. Energy Mater.
,
2
(
7
), pp.
5109
5115
.
8.
Ren
,
Y.
,
Zhao
,
T.
,
Tan
,
P.
,
Wei
,
Z.
, and
Zhou
,
X.
,
2017
, “
Modeling of an Aprotic Li-O2 Battery Incorporating Multiple-Step Reactions
,”
Appl. Energy
,
187
, pp.
706
716
. 10.1016/j.apenergy.2016.11.108
9.
Yin
,
Y.
,
Gaya
,
C.
,
Torayev
,
A.
,
Thangavel
,
V.
, and
Franco
,
A. A.
,
2016
, “
Impact of Li2O2 Particle Size on Li–O2 Battery Charge Process: Insights From a Multiscale Modeling Perspective
,”
J. Phys. Chem. Lett.
,
7
(
19
), pp.
3897
3902
. 10.1021/acs.jpclett.6b01823
10.
Lu
,
Y.-C.
,
Gasteiger
,
H. A.
,
Parent
,
M. C.
,
Chiloyan
,
V.
, and
Shao-Horn
,
Y.
,
2010
, “
The Influence of Catalysts on Discharge and Charge Voltages of Rechargeable Li–Oxygen Batteries
,”
Electrochem. Solid-State Lett.
,
13
(
6
), pp.
A69
A72
. 10.1149/1.3363047
11.
Balaish
,
M.
,
Leskes
,
M.
, and
Ein-Eli
,
Y.
,
2018
, “
Investigation of Rechargeable Poly (Ethylene Oxide)-Based Solid Lithium–Oxygen Batteries
,”
ACS Appl. Energy Mater.
,
1
(
7
), pp.
3048
3056
. 10.1021/acsaem.8b00702
12.
McCloskey
,
B. D.
,
Scheffler
,
R.
,
Speidel
,
A.
,
Girishkumar
,
G.
, and
Luntz
,
A. C.
,
2012
, “
On the Mechanism of Nonaqueous Li–O2 Electrochemistry on C and Its Kinetic Overpotentials: Some Implications for Li–Air Batteries
,”
J. Phys. Chem. C
,
116
(
45
), pp.
23897
23905
. 10.1021/jp306680f
13.
Allen
,
C. J.
,
Hwang
,
J.
,
Kautz
,
R.
,
Mukerjee
,
S.
,
Plichta
,
E. J.
,
Hendrickson
,
M. A.
, and
Abraham
,
K.
,
2012
, “
Oxygen Reduction Reactions in Ionic Liquids and the Formulation of a General ORR Mechanism for Li–Air Batteries
,”
J. Phys. Chem. C
,
116
(
39
), pp.
20755
20764
. 10.1021/jp306718v
14.
Torayev
,
A.
,
Magusin
,
P. C.
,
Grey
,
C. P.
,
Merlet
,
C.
, and
Franco
,
A. A.
,
2018
, “
Importance of Incorporating Explicit 3D-Resolved Electrode Mesostructures in Li–O2 Battery Models
,”
ACS Appl. Energy Mater.
,
1
(
11
), pp.
6433
6441
. 10.1021/acsaem.8b01392
15.
Zhu
,
L.
,
Scheiba
,
F.
,
Trouillet
,
V.
,
Georgian
,
M.
,
Fu
,
Q.
,
Sarapulpva
,
A.
,
Sigel
,
F.
,
Hua
,
W.
, and
Ehrenberg
,
H.
,
2019
, “
MnO2 and Reduced Graphene Oxide as Bifunctional Electrocatalysts for Li–O2 Batteries
,”
ACS Appl. Energy Mater.
,
2
(
10
), pp.
7121
7131
.
16.
Zhang
,
S. S.
,
Foster
,
D.
, and
Read
,
J.
,
2010
, “
Discharge Characteristic of a Non-Aqueous Electrolyte Li/O2 Battery
,”
J. Power Sources
,
195
(
4
), pp.
1235
1240
. 10.1016/j.jpowsour.2009.08.088
17.
Viswanathan
,
V.
,
Thygesen
,
K. S.
,
Hummelshøj
,
J.
,
Nørskov
,
J. K.
,
Girishkumar
,
G.
,
McCloskey
,
B.
, and
Luntz
,
A.
,
2011
, “
Electrical Conductivity in Li2O2 and its Role in Determining Capacity Limitations in Non-Aqueous Li-O2 Batteries
,”
J. Chem. Phys.
,
135
(
21
), p.
214704
. 10.1063/1.3663385
18.
Chen
,
W.
,
Zhang
,
Z.
,
Bao
,
W.
,
Lai
,
Y.
,
Li
,
J.
,
Gan
,
Y.
, and
Wang
,
J.
,
2014
, “
Hierarchical Mesoporous γ-Fe2O3/Carbon Nanocomposites Derived From Metal Organic Frameworks as a Cathode Electrocatalyst for Rechargeable Li-O2 Batteries
,”
Electrochim. Acta
,
134
, pp.
293
301
. 10.1016/j.electacta.2014.04.110
19.
Wang
,
F.
,
Kahol
,
P.
,
Gupta
,
R.
, and
Li
,
X.
,
2019
, “
Experimental Studies of Carbon Electrodes With Various Surface Area for Li–O2 Batteries
,”
ASME J. Electrochem. Energy Convers. Storage
,
16
(
4
), p.
041007
. 10.1115/1.4043229
20.
Li
,
X.
,
2015
, “
A Modeling Study of the Pore Size Evolution in Lithium-Oxygen Battery Electrodes
,”
J. Electrochem. Soc.
,
162
(
8
), pp.
A1636
A1645
. 10.1149/2.0921508jes
21.
Li
,
X.
, and
Faghri
,
A.
,
2012
, “
Optimization of the Cathode Structure of Lithium-Air Batteries Based on a Two-Dimensional, Transient, Non-Isothermal Model
,”
J. Electrochem. Soc.
,
159
(
10
), pp.
A1747
A1754
. 10.1149/2.043210jes
22.
Sakai
,
K.
,
Iwamura
,
S.
, and
Mukai
,
S. R.
,
2017
, “
Influence of the Porous Structure of the Cathode on the Discharge Capacity of Lithium-Air Batteries
,”
J. Electrochem. Soc.
,
164
(
13
), pp.
A3075
A3080
. 10.1149/2.0791713jes
23.
Xiao
,
J.
,
Wang
,
D.
,
Xu
,
W.
,
Wang
,
D.
,
Williford
,
R. E.
,
Liu
,
J.
, and
Zhang
,
J.-G.
,
2010
, “
Optimization of Air Electrode for Li/Air Batteries
,”
J. Electrochem. Soc.
,
157
(
4
), pp.
A487
A492
. 10.1149/1.3314375
24.
Hall
,
D. S.
,
Self
,
J.
, and
Dahn
,
J.
,
2015
, “
Dielectric Constants for Quantum Chemistry and Li-Ion Batteries: Solvent Blends of Ethylene Carbonate and Ethyl Methyl Carbonate
,”
J. Phys. Chem. C
,
119
(
39
), pp.
22322
22330
. 10.1021/acs.jpcc.5b06022
25.
Xiao
,
J.
,
Hu
,
J.
,
Wang
,
D.
,
Hu
,
D.
,
Xu
,
W.
,
Graff
,
G. L.
,
Nie
,
Z.
,
Liu
,
J.
, and
Zhang
,
J.-G.
,
2011
, “
Investigation of the Rechargeability of Li–O2 Batteries in Non-Aqueous Electrolyte
,”
J. Power Sources
,
196
(
13
), pp.
5674
5678
. 10.1016/j.jpowsour.2011.02.060
26.
Zhang
,
Z.
,
Lu
,
J.
,
Assary
,
R. S.
,
Du
,
P.
,
Wang
,
H.-H.
,
Sun
,
Y.-K.
,
Qin
,
Y.
,
Lau
,
K. C.
,
Greeley
,
J.
, and
Redfern
,
P. C.
,
2011
, “
Increased Stability Toward Oxygen Reduction Products for Lithium-Air Batteries With Oligoether-Functionalized Silane Electrolytes
,”
J. Phys. Chem. C
,
115
(
51
), pp.
25535
25542
. 10.1021/jp2087412
27.
Laino
,
T.
, and
Curioni
,
A.
,
2012
, “
A New Piece in the Puzzle of Lithium/Air Batteries: Computational Study on the Chemical Stability of Propylene Carbonate in the Presence of Lithium Peroxide
,”
Chem.–Eur. J.
,
18
(
12
), pp.
3510
3520
. 10.1002/chem.201103057
28.
Xu
,
D.
,
Wang
,
Z.-l.
,
Xu
,
J.-j.
,
Zhang
,
L.-l.
, and
Zhang
,
X.-b.
,
2012
, “
Novel DMSO-Based Electrolyte for High Performance Rechargeable Li–O2 Batteries
,”
Chem. Commun.
,
48
(
55
), pp.
6948
6950
. 10.1039/c2cc32844e
29.
Lu
,
J.
,
Li
,
L.
,
Park
,
J.-B.
,
Sun
,
Y.-K.
,
Wu
,
F.
, and
Amine
,
K.
,
2014
, “
Aprotic and Aqueous Li–O2 Batteries
,”
Chem. Rev.
,
114
(
11
), pp.
5611
5640
. 10.1021/cr400573b
30.
Nasybulin
,
E.
,
Xu
,
W.
,
Engelhard
,
M. H.
,
Nie
,
Z.
,
Burton
,
S. D.
,
Cosimbescu
,
L.
,
Gross
,
M. E.
, and
Zhang
,
J.-G.
,
2013
, “
Effects of Electrolyte Salts on the Performance of Li–O2 Batteries
,”
J. Phys. Chem. C
,
117
(
6
), pp.
2635
2645
. 10.1021/jp311114u
31.
Xu
,
W.
,
Xiao
,
J.
,
Wang
,
D.
,
Zhang
,
J.
, and
Zhang
,
J.-G.
,
2010
, “
Effects of Nonaqueous Electrolytes on the Performance of Lithium/Air Batteries
,”
J. Electrochem. Soc.
,
157
(
2
), pp.
A219
A224
. 10.1149/1.3269928
32.
Mohazabrad
,
F.
,
Wang
,
F.
, and
Li
,
X.
,
2016
, “
Experimental Studies of Salt Concentration in Electrolyte on the Performance of Li-O2 Batteries at Various Current Densities
,”
J. Electrochem. Soc.
,
163
(
13
), pp.
A2623
A2627
. 10.1149/2.0711613jes
33.
Horstmann
,
B.
,
Gallant
,
B.
,
Mitchell
,
R.
,
Bessler
,
W. G.
,
Shao-Horn
,
Y.
, and
Bazant
,
M. Z.
,
2013
, “
Rate-dependent Morphology of Li2O2 Growth in Li–O2 Batteries
,”
J. Phys. Chem. Lett.
,
4
(
24
), pp.
4217
4222
. 10.1021/jz401973c
34.
Li
,
X.
,
Huang
,
J.
, and
Faghri
,
A.
,
2015
, “
Modeling Study of a Li–O2 Battery With an Active Cathode
,”
Energy
,
81
, pp.
489
500
. 10.1016/j.energy.2014.12.062
35.
Matyka
,
M.
,
Khalili
,
A.
, and
Koza
,
Z.
,
2008
, “
Tortuosity-Porosity Relation in Porous Media Flow
,”
Phys. Rev. E
,
78
(
2
), p.
026306
. 10.1103/PhysRevE.78.026306
36.
Anderson
,
A. B.
,
Roques
,
J. M.
,
Mukerjee
,
S.
,
Murthi
,
V. S.
,
Markovic
,
N. M.
, and
Stamenkovic
,
V.
,
2005
, “
Activation Energies for Oxygen Reduction on Platinum Alloys: Theory and Experiment
,”
J. Phys. Chem. B
,
109
(
3
), pp.
1198
1203
. 10.1021/jp047468z
37.
Laoire
,
C. O.
,
Mukerjee
,
S.
,
Abraham
,
K.
,
Plichta
,
E. J.
, and
Hendrickson
,
M. A.
,
2010
, “
Influence of Nonaqueous Solvents on the Electrochemistry of Oxygen in the Rechargeable Lithium−Air Battery
,”
J. Phys. Chem. C
,
114
(
19
), pp.
9178
9186
. 10.1021/jp102019y
38.
Gittleson
,
F. S.
,
Jones
,
R. E.
,
Ward
,
D. K.
, and
Foster
,
M. E.
,
2017
, “
Oxygen Solubility and Transport in Li–Air Battery Electrolytes: Establishing Criteria and Strategies for Electrolyte Design
,”
Energy Environ. Sci.
,
10
(
5
), pp.
1167
1179
. 10.1039/C6EE02915A
39.
Mohazabrad
,
F.
,
Wang
,
F.
, and
Li
,
X.
,
2017
, “
Influence of the Oxygen Electrode Open Ratio and Electrolyte Evaporation on the Performance of Li–O2 Batteries
,”
ACS Appl. Mater. Interfaces
,
9
(
18
), pp.
15459
15469
. 10.1021/acsami.7b02199
40.
Read
,
J.
,
Mutolo
,
K.
,
Ervin
,
M.
,
Behl
,
W.
,
Wolfenstine
,
J.
,
Driedger
,
A.
, and
Foster
,
D.
,
2003
, “
Oxygen Transport Properties of Organic Electrolytes and Performance of Lithium/Oxygen Battery
,”
J. Electrochem. Soc.
,
150
(
10
), pp.
A1351
A1356
. 10.1149/1.1606454
41.
Wang
,
F.
, and
Li
,
X.
,
2018
, “
Effects of the Electrode Wettability on the Deep Discharge Capacity of Li–O2 Batteries
,”
ACS Omega
,
3
(
6
), pp.
6006
6012
. 10.1021/acsomega.8b00808
42.
Wang
,
F.
, and
Li
,
X.
,
2018
, “
Pore-Scale Simulations of Porous Electrodes of Li–O2 Batteries at Different Saturation Levels
,”
ACS Appl. Mater. Interfaces
,
10
(
31
), pp.
26222
26232
. 10.1021/acsami.8b06624
43.
Wang
,
F.
, and
Li
,
X.
,
2018
, “
Discharge Li–O2 Batteries With Intermittent Current
,”
J. Power Sources
,
394
, pp.
50
56
. 10.1016/j.jpowsour.2018.05.033
You do not currently have access to this content.