Abstract

The purpose of this paper is to highlight the design, development, and testing of a low-concentration vanadium redox flow battery (VRFB). The low-cost implementation has a 7 cm × 7 cm active membrane area and an electrolyte volume of 450 mL for each positive and negative electrolyte. The electrolyte concentration is approximately 0.066 M vanadium. An H-cell for performing electrolysis with the electrolytes is developed, and the process and method for creating the electrolyte for this low-concentration implementation are described and documented. The maximum power density and energy efficiency of the battery among tests between 500 and 800 mA are 1.32 W/L and 28.51%, respectively. Results are presented in terms of polarization curves, charge/discharge cycles, and voltage, coulombic, and energy efficiencies. Adaptation of a COMSOL Multiphysics model is implemented to compare the computational performance figures and the results of our VRFB implementation. The numerical results agree with experimentation, and differences in the results can be attributed to the losses present in the experimental tests. The proposed battery and design are intended to investigate the performance and feasibility of a low-concentration VRFB. The ultimate long-term objective of this research is the development of a novel, cost-effective, and safe redox flow battery using hydrogen peroxide as one of the electrolytes.

References

References
1.
Ibrahim
,
H.
,
Ilinca
,
A.
, and
Perron
,
J.
,
2008
, “
Energy Storage Systems—Characteristics and Comparisons
,”
Renew. Sustain. Energy Rev.
,
12
(
5
), pp.
1221
1250
. 10.1016/j.rser.2007.01.023
2.
Miroshnikov
,
M.
,
Kato
,
K.
,
Babu
,
G.
,
Thangavel
,
K. N.
,
Mahankali
,
K.
,
Hohenstein
,
E.
,
Wang
,
H.
,
Satapathy
,
S.
,
Divya
,
K. P.
,
Asare
,
H.
,
Arava
,
L. M. R.
,
Ajayan
,
P. M.
, and
John
,
G.
,
2019
, “
Nature-Derived Sodium-Ion Battery: Mechanistic Insights Into Na-Ion Coordination Within Sustainable Molecular Cathode Materials
,”
Am. Chem. Soc.
,
2
(
12
), pp.
8596
8604
. 10.1021/acsaem.9b01526
3.
Mahankali
,
K.
,
Thangavel
,
K. N.
,
Ding
,
Y.
,
Putatunda
,
S. K.
, and
Arava
,
L. M. R.
,
2019
, “
Interfacial Behavior of Water-in-Salt Electrolytes at Porous Electrodes and Its Effect on Supercapacitor Performance
,”
Electrochim. Acta
,
326
, p.
134989
. 10.1016/j.electacta.2019.134989
4.
Ponce de León
,
C.
,
Frías-Ferrer
,
A.
,
Gonzàlez-García
,
J.
,
Szánto
,
D. A.
, and
Walsh
,
F.
,
2006
, “
Redox Flow Cells for Energy Conversion
,”
J. Power Sources
,
160
(
1
), pp.
716
732
. 10.1016/j.jpowsour.2006.02.095
5.
Wang
,
W.
,
Luo
,
Q.
,
Li
,
B.
,
Wei
,
X.
,
Li
,
L.
, and
Yang
,
Z.
,
2013
, “
Recent Progress in Redox Flow Battery Research and Development
,”
Adv. Funct. Mater.
,
23
(
8
), pp.
970
986
. 10.1002/adfm.201200694
6.
Ledjeff
,
K.
, and
Reiner
,
A.
,
1988
, “
Iron/Chromium—Redox Battery: Battery Development for Photovoltaic Systems
,”
Adv. Solar Energy Technol.
,
3
, pp.
2976
2979
. 10.1016/B978-0-08-034315-0.50548-6
7.
Munaiah
,
Y.
,
Suresh
,
S.
,
Dheenadaylan
,
S.
,
Pillai
,
V. K.
, and
Ragupathy
,
P.
,
2014
, “
Comparative Electrocatalytic Performance of Single-Walled and Multiwalled Carbon Nanotubes for Zinc Bromine Redox Flow Batteries
,”
J. Phys. Chem.
,
118
(
27
), pp.
14795
14804
. 10.1021/jp503287r
8.
Munaiah
,
Y.
,
Dheenadaylan
,
S.
,
Ragupathy
,
P.
, and
Pillai
,
V. K.
,
2013
, “
High Performance Carbon Nanotube Based Electrodes for Zinc Bromine Redox Flow Batteries
,”
ECS J. Solid State Sci. Technol.
,
2
(
10
), pp.
M3182
M3186
. 10.1149/2.024310jss
9.
Suresh
,
S.
,
Ulaganathan
,
M.
,
Venkatesan
,
N.
,
Periasamy
,
P.
, and
Ragupathy
,
P.
,
2018
, “
High Performance Zinc-Bromine Redox Flow Batteries: Role of Various Carbon Felts and Cell Configurations
,”
J. Energy Storage
,
20
, pp.
134
139
. 10.1016/j.est.2018.09.006
10.
Rychcik
,
M.
, and
Skyllas-Kazacos
,
M.
,
1988
, “
Characteristics of a New All-Vanadium Redox Flow Battery
,”
J. Power Sources
,
22
(
1
), pp.
59
67
. 10.1016/0378-7753(88)80005-3
11.
Li
,
L.
,
Kim
,
S.
,
Wang
,
W.
,
Vijayakumar
,
M.
,
Nie
,
Z.
,
Chen
,
B.
,
Zhang
,
J.
,
Xia
,
G.
,
Hu
,
J.
,
Graff
,
G.
,
Liu
,
J.
, and
Yang
,
Z.
,
2011
, “
A Stable Vanadium Redox-Flow Battery With High Energy Density for Large-Scale Energy Storage
,”
Adv. Energy Mater.
,
1
(
3
), pp.
394
400
. 10.1002/aenm.201100008
12.
Parasuraman
,
A.
,
Lim
,
T. M.
,
Menictas
,
C.
, and
Skyllas-Kazacos
,
M.
,
2012
, “
Review of Material Research and Development for Vanadium Redox Flow Battery Applications
,”
Electrochim. Acta
,
101
, pp.
27
40
. 10.1016/j.electacta.2012.09.067
13.
Vafiadis
,
H.
, and
Skyllas-Kazacos
,
M.
,
2006
, “
Evaluation of Membranes for the Novel Vanadium Bromine Redox Flow Cell
,”
J. Membr. Sci.
,
279
(
1–2
), pp.
394
402
. 10.1016/j.memsci.2005.12.028
14.
Gundlapalli
,
R.
,
Kumar
,
S.
, and
Sreenivas
,
J.
,
2018
, “
Stack Design Considerations for Vanadium Redox Flow Battery
,”
INAE Lett.
,
3
(
3
), pp.
149
157
. 10.1007/s41403-018-0044-1
15.
Li
,
X.
,
Zhang
,
H.
,
Mai
,
Z.
,
Zhanga
,
H.
, and
Vankelecom
,
I.
,
2011
, “
Ion Exchange Membranes for Vanadium Redox Flow Battery (VRB) Applications
,”
Energy Environ. Sci.
,
4
(
4
), pp.
1147
1160
. 10.1039/c0ee00770f
16.
Castañeda
,
L. F.
,
Walsh
,
F. C.
,
Nava
,
J. L.
, and
Ponce de León
,
C.
,
2017
, “
Graphite Felt as a Versatile Electrode Material: Properties, Reaction Environment, Performance and Applications
,”
Electrochim. Acta
,
258
, pp.
1115
1139
. 10.1016/j.electacta.2017.11.165
17.
Aaron
,
D.
,
Liu
,
Q.
,
Tang
,
Z.
,
Grim
,
G.
,
Papandrew
,
A.
,
Turhan
,
A.
,
Zawodzinski
,
T.
, and
Mench
,
M.
,
2012
, “
Dramatic Performance Gains in Vanadium Redox Flow Batteries Through Modified Cell Architecture
,”
J. Power Sources
,
206
, pp.
450
453
. 10.1016/j.jpowsour.2011.12.026
18.
Zhou
,
X.
,
Zhao
,
T.
,
Zeng
,
Y.
,
An
,
L.
, and
Wei
,
L.
,
2016
, “
A Highly Permeable and Enhanced Surface Area Carbon-Cloth Electrode for Vanadium Redox Flow Batteries
,”
J. Power Sources
,
329
, pp.
247
254
. 10.1016/j.jpowsour.2016.08.085
19.
Skyllas-Kazacos
,
M.
,
2003
, “
Novel Vanadium Chloride/Polyhalide Redox Flow Battery
,”
J. Power Sources
,
124
(
1
), pp.
299
302
. 10.1016/S0378-7753(03)00621-9
20.
Rahman
,
F.
, and
Skyllas-Kazacos
,
M.
,
2009
, “
Vanadium Redox Battery: Positive Half-Cell Electrolyte Studies
,”
J. Power Sources
,
189
(
2
), pp.
1212
1219
. 10.1016/j.jpowsour.2008.12.113
21.
Zhang
,
J.
,
Li
,
L.
,
Nie
,
Z.
,
Chen
,
B.
,
Vijayakumar
,
M.
,
Kim
,
S.
,
Wang
,
W.
,
Schwenzer
,
B.
,
Liu
,
J.
, and
Yang
,
Z.
,
2011
, “
Effects of Additives on the Stability of Electrolytes for All-Vanadium Redox Flow Batteries
,”
J. Appl. Electrochem.
,
41
(
10
), pp.
1215
1221
. 10.1007/s10800-011-0312-1
22.
Wu
,
X.
,
Liu
,
S.
,
Wang
,
N.
,
Peng
,
S.
, and
He
,
Z.
,
2012
, “
Influence of Organic Additives on Electrochemical Properties of the Positive Electrolyte for All-Vanadium Redox Flow Battery
,”
Electrochim. Acta
,
78
, pp.
475
482
. 10.1016/j.electacta.2012.06.065
23.
Chang
,
F.
,
Hu
,
C.
,
Liu
,
X.
,
Liu
,
L.
, and
Zhang
,
J.
,
2012
, “
Coulter Dispersant as Positive Electrolyte Additive for the Vanadium Redox Flow Battery
,”
Electrochim. Acta
,
60
, pp.
334
338
. 10.1016/j.electacta.2011.11.065
24.
Wu
,
X.
,
Liu
,
J.
,
Xiang
,
X.
,
Zhang
,
J.
,
Hu
,
J.
, and
Wu
,
Y.
,
2014
, “
Electrolytes for Vanadium Redox Flow Batteries
,”
Pure Appl. Chem.
,
86
(
5
), pp.
661
669
. 10.1515/pac-2013-1213
25.
Skyllas-Kazacos
,
M.
,
Kazacos
,
G.
,
Poon
,
G.
, and
Verseema
,
H.
,
2010
, “
Recent Advances With the UNSW Vanadium-Based Redox Flow Batteries
,”
Int. J. Energy Res.
,
34
(
2
), pp.
182
189
. 10.1002/er.1658
26.
Park
,
S.
,
Lee
,
H. J.
,
Lee
,
H.
, and
Kim
,
H.
,
2018
, “
Development of a Redox Flow Battery With Multiple Redox Couples at Both Positive and Negative Electrolytes for High Energy Density
,”
J. Electrochem. Soc.
,
165
(
14
), pp.
A3215
A3220
. 10.1149/2.0301814jes
27.
Menictas
,
C.
, and
Skyllas-Kazacos
,
M.
,
2011
, “
Performance of Vanadium-Oxygen Redox Fuel Cell
,”
J. Appl. Electrochem.
,
41
(
10
), pp.
1223
1232
. 10.1007/s10800-011-0342-8
28.
An
,
L.
,
Zhao
,
T.
,
Zhou
,
X.
,
Yan
,
X.
, and
Jung
,
C.
,
2015
, “
A Low-Cost, High-Performance Zinc-Hydrogen Peroxide Fuel Cell
,”
J. Power Sources
,
275
, pp.
831
834
. 10.1016/j.jpowsour.2014.11.076
29.
Xu
,
T.
,
2005
, “
Ion Exchange Membranes: State of Their Development and Perspective
,”
J. Membr. Sci.
,
263
(
1–2
), pp.
1
29
. 10.1016/j.memsci.2005.05.002
30.
Zhang
,
H.
,
Zhang
,
H.
,
Li
,
X.
,
Mai
,
Z.
, and
Zhang
,
J.
,
2011
, “
Nanofiltration (NF) Membranes: the Next Generation Separators for All Vanadium Redox Flow Batteries (VRBs)?
,”
Energy Environ. Sci.
,
4
(
5
), pp.
1676
1679
. 10.1039/c1ee01117k
31.
Sun
,
B.
, and
Skyllas-Kazacos
,
M.
,
1992
, “
Modification of Graphite Electrode Materials for Vanadium Redox Flow Battery Application—I. Thermal Treatment
,”
Electrochim. Acta
,
37
(
7
), pp.
1253
1260
. 10.1016/0013-4686(92)85064-R
32.
Pezeshki
,
A. M.
,
Clement
,
J. T.
,
Veith
,
G. M.
,
Zawodzinski
,
T. A.
, and
Mench
,
M. M.
,
2015
, “
High Performance Electrodes in Vanadium Redox Flow Batteries Through Oxygen-Enriched Thermal Activation
,”
J. Power Sources
,
294
, pp.
333
338
. 10.1016/j.jpowsour.2015.05.118
33.
Eifert
,
L.
,
Banerjee
,
R.
,
Jusys
,
Z.
, and
Zeis
,
R.
,
2018
, “
Characterization of Carbon Felt Electrodes for Vanadium Redox Flow Batteries: Impact of Treatment Methods
,”
J. Electrochem. Soc.
,
165
(
11
), pp.
A2577
A2586
. 10.1149/2.0531811jes
34.
González
,
Z.
,
Sánchez
,
A.
,
Blanco
,
C.
,
Granda
,
M.
,
Menéndez
,
R.
, and
Santamaría
,
R.
,
2011
, “
Enhanced Performance of a Bi-Modified Graphite Felt as the Positive Electrode of a Vanadium Redox Flow Battery
,”
Electrochem. Commun.
,
13
(
12
), pp.
1379
1382
. 10.1016/j.elecom.2011.08.017
35.
Wei
,
L.
,
Zhao
,
T.
,
Zhao
,
G.
,
An
,
L.
, and
Zeng
,
L.
,
2016
, “
A High-Performance Carbon Nanoparticle-Decorated Graphite Felt Electrode for Vanadium Redox Flow Batteries
,”
Appl. Energy
,
176
, pp.
74
79
. 10.1016/j.apenergy.2016.05.048
36.
Yun
,
N.
,
Park
,
J. J.
,
Park
,
O.
,
Lee
,
K. B.
, and
Yang
,
J. H.
,
2018
, “
Electrocatalytic Effect of NiO Nanoparticles Evenly Distributed on Agraphite Felt Electrode for Vanadium Redox Flow Batteries
,”
Electrochim. Acta
,
278
, pp.
226
235
. 10.1016/j.electacta.2018.05.039
37.
Flox
,
C.
,
Skoumal
,
M.
,
Rubio-Garcia
,
J.
,
Andreu
,
T.
, and
Morante
,
J. R.
,
2013
, “
Strategies for Enhancing Electrochemical Activity of Carbon-Based Electrodes for All-Vanadium Redox Flow Batteries
,”
Appl. Energy
,
109
, pp.
344
351
. 10.1016/j.apenergy.2013.02.001
38.
Kim
,
K. J.
,
Kim
,
Y.-J.
,
Kim
,
J.-H.
, and
Park
,
M.-S.
,
2011
, “
The Effects of Surface Modification on Carbon Felt Electrodes for Use in Vanadium Redox Flow Batteries
,”
Mater. Chem. Phys.
,
131
(
1–2
), pp.
547
553
. 10.1016/j.matchemphys.2011.10.022
39.
Bhattarai
,
A.
,
Wai
,
N.
,
Schweiss
,
R.
,
Whitehead
,
A.
,
Lim
,
T. M.
, and
Hng
,
H. H.
,
2017
, “
Advanced Porous Electrodes With Flow Channels for Vanadium Redox Flow Battery
,”
J. Power Sources
,
341
, pp.
83
90
. 10.1016/j.jpowsour.2016.11.113
40.
Li
,
W.
,
Liu
,
J.
, and
Yan
,
C.
,
2011
, “
Graphite–Graphite Oxide Composite Electrode for Vanadium Redox Flow Battery
,”
Electrochim. Acta
,
56
(
14
), pp.
5290
5294
. 10.1016/j.electacta.2011.02.083
41.
He
,
Z.
,
Li
,
M.
,
Li
,
Y.
,
Zhu
,
J.
,
Jiang
,
Y.
,
Meng
,
W.
,
Zhou
,
H.
,
Wang
,
L.
, and
Dai
,
L.
,
2018
, “
Flexible Electrospun Carbon Nanofiber Embedded With TiO2 as Excellent Negative Electrode for Vanadium Redox Flow Battery
,”
Electrochim. Acta
,
281
, pp.
601
610
. 10.1016/j.electacta.2018.06.011
42.
Li
,
W.
,
Liu
,
J.
, and
Yan
,
C.
,
2011
, “
Multi-Walled Carbon Nanotubes Used as an Electrode Reaction Catalyst for VO2+/VO2+ for a Vanadium Redox Flow Battery
,”
Carbon
,
49
(
11
), pp.
3463
3470
. 10.1016/j.carbon.2011.04.045
43.
Wang
,
Q.
,
Qu
,
Z.
,
Jiang
,
Z.
, and
Yang
,
W.
,
2018
, “
Numerical Study on Vanadium Redox Flow Battery Performance With Non-Uniformly Compressed Electrode and Serpentine Flow Field
,”
Appl. Energy
,
220
, pp.
106
116
. 10.1016/j.apenergy.2018.03.058
44.
Gurieff
,
N.
,
Timchenko
,
V.
, and
Menictas
,
C.
,
2018
, “
Variable Porous Electrode Compression for Redox Flow Battery Systems
,”
Batteries
,
4
(
4
), pp.
1
10
. 10.3390/batteries4040053
45.
Darling
,
R. M.
, and
Perry
,
M. L.
,
2014
, “
The Influence of Electrode and Channel Configurations on Flow Battery Performance
,”
J. Electrochem. Soc.
,
161
(
9
), pp.
A1381
A1387
. 10.1149/2.0941409jes
46.
Knudsen
,
E.
,
Albertus
,
P.
,
Cho
,
K.
,
Weber
,
A.
, and
Kojic
,
A.
,
2015
, “
Flow Simulation and Analysis of High-Power Flow Batteries
,”
J. Power Sources
,
299
, pp.
617
628
. 10.1016/j.jpowsour.2015.08.041
47.
Xu
,
Q.
,
Zhao
,
T.
, and
Leung
,
P.
,
2013
, “
Numerical Investigations of Flow Field Designs for Vanadium Redox Flow Batteries
,”
Appl. Energy
,
105
, pp.
47
56
. 10.1016/j.apenergy.2012.12.041
48.
Houser
,
J.
,
Clement
,
J.
,
Pezeshki
,
A.
, and
Mench
,
M. M.
,
2016
, “
Influence of Architecture and Material Properties on Vanadium Redox Flow Battery Performance
,”
J. Power Sources
,
302
, pp.
369
377
. 10.1016/j.jpowsour.2015.09.095
49.
Messaggi
,
M.
,
Mereu
,
R.
,
Baricci
,
A.
,
Inzoli
,
F.
,
Casalegno
,
A.
, and
Zago
,
M.
,
2018
, “
Analysis of Flow Field Design on Vanadium Redox Flow Battery Performance: Development of 3D Computational Fluid Dynamic Model and Experimental Validation
,”
Appl. Energy
,
228
, pp.
1057
1070
. 10.1016/j.apenergy.2018.06.148
50.
Tang
,
A.
,
Bao
,
J.
, and
Skyllas-Kazacos
,
M.
,
2014
, “
Studies on Pressure Losses and Flow Rate Optimization in Vanadium Redox Flow Battery
,”
J. Power Sources
,
248
, pp.
154
162
. 10.1016/j.jpowsour.2013.09.071
51.
Lee
,
N. J.
,
Lee
,
S.-W.
,
Kim
,
K. J.
,
Kim
,
J.-H.
,
Park
,
M.-S.
,
Jeong
,
G.
,
Kim
,
Y.-J.
, and
Byun
,
D.
,
2012
, “
Development of Carbon Composite Bipolar Plates for Vanadium Redox Flow Batteries
,”
Bull. Korean Chem. Soc.
,
33
(
11
), pp.
3589
3592
. 10.5012/bkcs.2012.33.11.3589
52.
Park
,
M.
,
Jung
,
Y.-J.
,
Ryu
,
J.
, and
Cho
,
J.
,
2014
, “
Material Selection and Optimization for Highly Stable Composite Bipolar Plates in Vanadium Redox Flow Batteries
,”
J. Mater. Chem. A
,
2
(
38
), pp.
15808
15815
. 10.1039/C4TA03542A
53.
Han
,
J.
,
Yoo
,
H.
,
Kim
,
M.
,
Lee
,
G.
, and
Choi
,
J.
,
2017
, “
High-Performane Bipolar Plate of Thin IrOx-Coated TiO2 Nanotubes in Vanadium Redox Flow Batteries
,”
Catal. Today
,
295
, pp.
132
139
. 10.1016/j.cattod.2017.06.018
54.
Ma
,
X.
,
Zhang
,
H.
,
Sun
,
C.
,
Zou
,
Y.
, and
Zhang
,
T.
,
2012
, “
An Optimal Strategy of Electrolyte Flow Rate for Vanadium Redox Flow Battery
,”
J. Power Sources
,
203
, pp.
153
158
. 10.1016/j.jpowsour.2011.11.036
55.
Cunha
,
Á
,
Martins
,
J.
,
Rodrigues
,
N.
, and
Brito
,
F. P.
,
2014
, “
Vanadium Redox Flow Batteries: A Technology Review
,”
Int. J. Energy Res.
,
39
(
7
), pp.
889
918
. 10.1002/er.3260
56.
Skyllas-Kazacos
,
M.
,
Cao
,
L.
,
Kazacos
,
M.
,
Kausar
,
N.
, and
Mousa
,
A.
,
2016
, “
Vanadium Electrolyte Studeis for the Vanadium Redox Battery—A Review
,”
ChemSusChem Rev.
,
9
(
13
), pp.
1521
1543
. 10.1002/cssc.201600102
57.
Chanyong
,
C.
,
Kim
,
S.
,
Kim
,
R.
,
Choi
,
Y.
,
Kim
,
S.
,
Jung
,
H. Y.
,
Yang
,
J. H.
, and
Kim
,
H. T.
,
2017
, “
A Review of Vanadium Electrolytes for Vanadium Redox Flow Batteries
,”
Renew. Sustain. Energy Rev.
,
69
, pp.
263
274
. 10.1016/j.rser.2016.11.188
58.
Knehr
,
K. W.
,
Agar
,
E.
,
Dennison
,
C. R.
,
Kalidindi
,
A. R.
, and
Kumbur
,
E. C.
,
2012
, “
A Transient Vanadium Flow Battery Model Incorporating Vanadium Crossover and Water Transport Through the Membrane
,”
J. Electrochem. Soc.
,
159
(
9
), pp.
A1446
A1459
. 10.1149/2.017209jes
59.
Knehr
,
K.
, and
Kumbur
,
E.
,
2011
, “
Open Circuit Voltage of Vanadium Redox Flow Batteries: Discrepancy Between Models and Experiments
,”
Electrochem. Commun.
,
13
(
4
), pp.
342
345
. 10.1016/j.elecom.2011.01.020
60.
Shah
,
A.
,
Watt-Smith
,
M.
, and
Walsh
,
F.
,
2008
, “
A Dynamic Performance Model for Redox-Flow Batteries Involving Soluble Species
,”
Electrochim. Acta
,
53
(
27
), pp.
8087
8100
. 10.1016/j.electacta.2008.05.067
You do not currently have access to this content.