Abstract

State-of-health (SOH) is an essential parameter for the proper functioning of large battery packs. A wide array of methodologies has been proposed in the literature to track state of health, but they often lack the proper validation that needed to be universally adaptable to large deployed systems. This is likely induced by the lack of knowledge bridge between scientists, who understand batteries, and engineers, who understand controls. In this work, we will attempt to bridge this gap by providing definitions, concepts, and tools to apply necessary material science knowledge to advanced battery management systems (BMS). We will address SOH determination and prediction, as well as BMS implementation and validation using the mechanistic framework developed around electrochemical voltage spectroscopies. Particular focus will be set on the onset and the prediction of the second stage of accelerating capacity loss that is commonly observed in commercial lithium-ion batteries.

References

References
1.
Rezvanizaniani
,
S. M.
,
Liu
,
Z.
,
Chen
,
Y.
, and
Lee
,
J.
,
2014
, “
Review and Recent Advances in Battery Health Monitoring and Prognostics Technologies for Electric Vehicle (EV) Safety and Mobility
,”
J. Power Sources
,
256
, pp.
110
124
. 10.1016/j.jpowsour.2014.01.085
2.
Ali
,
M. U.
,
Zafar
,
A.
,
Nengroo
,
S. H.
,
Hussain
,
S.
,
Alvi
,
M. J.
, and
Kim
,
H.-J.
,
2019
, “
Towards a Smarter Battery Management System for Electric Vehicle Applications: A Critical Review of Lithium-Ion Battery State of Charge Estimation
,”
Energies
,
12
(
3
), 10.3390/en12030446
3.
Zhang
,
Y.
,
Wang
,
C.-Y.
, and
Tang
,
X.
,
2011
, “
Cycling Degradation of an Automotive LiFePO4 Lithium-Ion Battery
,”
J. Power Sources
,
196
(
3
), pp.
1513
1520
. 10.1016/j.jpowsour.2010.08.070
4.
Ecker
,
M.
,
Gerschler
,
J. B.
,
Vogel
,
J.
,
Käbitz
,
S.
,
Hust
,
F.
,
Dechent
,
P.
, and
Sauer
,
D. U.
,
2012
, “
Development of a Lifetime Prediction Model for Lithium-Ion Batteries Based on Extended Accelerated Aging Test Data
,”
J. Power Sources
,
215
, pp.
248
257
. 10.1016/j.jpowsour.2012.05.012
5.
Han
,
X.
,
Ouyang
,
M.
,
Lu
,
L.
, and
Li
,
J.
,
2014
, “
Cycle Life of Commercial Lithium-Ion Batteries With Lithium Titanium Oxide Anodes in Electric Vehicles
,”
Energies
,
7
(
8
), pp.
4895
4909
. 10.3390/en7084895
6.
Kassem
,
M.
,
Bernard
,
J.
,
Revel
,
R.
,
Pélissier
,
S.
,
Duclaud
,
F.
, and
Delacourt
,
C.
,
2012
, “
Calendar Aging of a Graphite/LiFePO4 Cell
,”
J. Power Sources
,
208
, pp.
296
305
. 10.1016/j.jpowsour.2012.02.068
7.
Han
,
X.
,
Ouyang
,
M.
,
Lu
,
L.
,
Li
,
J.
,
Zheng
,
Y.
, and
Li
,
Z.
,
2014
, “
A Comparative Study of Commercial Lithium Ion Battery Cycle Life in Electrical Vehicle: Aging Mechanism Identification
,”
J. Power Sources
,
251
, pp.
38
54
. 10.1016/j.jpowsour.2013.11.029
8.
Sarmah
,
S. B.
,
Kalita
,
P.
,
Garg
,
A.
,
Niu
,
X.-d.
,
Zhang
,
X.-W.
,
Peng
,
X.
, and
Bhattacharjee
,
D.
,
2019
, “
A Review of State of Health Estimation of Energy Storage Systems: Challenges and Possible Solutions for Futuristic Applications of Li-Ion Battery Packs in Electric Vehicles
,”
ASME J. Electrochem. Energy Convers. Storage
,
16
(
4
), p.
040801
.10.1115/1.4042987
9.
Baure
,
G.
, and
Dubarry
,
M.
,
2019
, “
Synthetic vs. Real Driving Cycles: A Comparison of Electric Vehicle Battery Degradation
,”
Batteries
,
5
(
2
), p.
42
. 10.3390/batteries5020042
10.
Wu
,
W.
,
Wu
,
W.
,
Qiu
,
X.
, and
Wang
,
S.
,
2018
, “
Low-temperature Reversible Capacity Loss and Aging Mechanism in Lithium-Ion Batteries for Different Discharge Profiles
,”
Int. J. Energ Res.
,
43
(
1
), pp.
243
253
. 10.1002/er.4257
11.
Radhakrishnan
,
K.
,
Coupar
,
T.
,
Nelson
,
D. J.
, and
Ellis
,
M. W.
,
2018
, “
Experimental Evaluation of the Effect of Cycle Profile on the Durability of Commercial Lithium Ion Power Cells
,”
ASME J. Electrochem. Energy Convers. Storage
,
16
(
1
), p.
011012
. 10.1115/1.4041013
12.
Gering
,
K. L.
,
Sazhin
,
S. V.
,
Jamison
,
D. K.
,
Michelbacher
,
C. J.
,
Liaw
,
B. Y.
,
Dubarry
,
M.
, and
Cugnet
,
M.
,
2011
, “
Investigation of Path Dependence in Commercial Lithium-Ion Cells Chosen for Plug-in Hybrid Vehicle Duty Cycle Protocols
,”
J. Power Sources
,
196
(
7
), pp.
3395
3403
. 10.1016/j.jpowsour.2010.05.058
13.
Klett
,
M.
,
Eriksson
,
R.
,
Groot
,
J.
,
Svens
,
P.
,
Ciosek Högström
,
K.
,
Lindström
,
R. W.
,
Berg
,
H.
,
Gustafson
,
T.
,
Lindbergh
,
G.
, and
Edström
,
K.
,
2014
, “
Non-Uniform Aging of Cycled Commercial LiFePO4//Graphite Cylindrical Cells Revealed by Post-Mortem Analysis
,”
J. Power Sources
,
257
, pp.
126
137
. 10.1016/j.jpowsour.2014.01.105
14.
Keil
,
P.
, and
Jossen
,
A.
,
2016
, “
Charging Protocols for Lithium-Ion Batteries and Their Impact on Cycle Life—An Experimental Study With Different 18650 High-Power Cells
,”
J. Energy Storage
,
6
, pp.
125
141
. 10.1016/j.est.2016.02.005
15.
Anseán
,
D.
,
Dubarry
,
M.
,
Devie
,
A.
,
Liaw
,
B. Y.
,
García
,
V. M.
,
Viera
,
J. C.
, and
González
,
M.
,
2017
, “
Operando Lithium Plating Quantification and Early Detection of a Commercial LiFePO4 Cell Cycled Under Dynamic Driving Schedule
,”
J. Power Sources
,
356
, pp.
36
46
. 10.1016/j.jpowsour.2017.04.072
16.
Severson
,
K. A.
,
Attia
,
P. M.
,
Jin
,
N.
,
Perkins
,
N.
,
Jiang
,
B.
,
Yang
,
Z.
,
Chen
,
M. H.
,
Aykol
,
M.
,
Herring
,
P. K.
,
Fraggedakis
,
D.
,
Bazant
,
M. Z.
,
Harris
,
S. J.
,
Chueh
,
W. C.
, and
Braatz
,
R. D.
,
2019
, “
Data-Driven Prediction of Battery Cycle Life Before Capacity Degradation
,”
Nat. Energy
,
4
(
5
), pp.
389
391
. 10.1038/s41560-019-0356-8
17.
Gao
,
Y.
,
Yang
,
S.
,
Jiang
,
J.
,
Zhang
,
C.
,
Zhang
,
W.
, and
Zhou
,
X.
,
2019
, “
The Mechanism and Characterization of Accelerated Capacity Deterioration for Lithium-Ion Battery With Li(NiMnCo) O2 Cathode
,”
J. Electrochem. Soc.
,
166
(
8
), pp.
A1623
A1635
. 10.1149/2.1001908jes
18.
Yang
,
X.-G.
,
Leng
,
Y.
,
Zhang
,
G.
,
Ge
,
S.
, and
Wang
,
C.-Y.
,
2017
, “
Modeling of Lithium Plating Induced Aging of Lithium-Ion Batteries: Transition From Linear to Nonlinear Aging
,”
J. Power Sources
,
360
, pp.
28
40
. 10.1016/j.jpowsour.2017.05.110
19.
Schuster
,
S. F.
,
Bach
,
T.
,
Fleder
,
E.
,
Müller
,
J.
,
Brand
,
M.
,
Sextl
,
G.
, and
Jossen
,
A.
,
2015
, “
Nonlinear Aging Characteristics of Lithium-Ion Cells Under Different Operational Conditions
,”
J. Energy Storage
,
1
, pp.
44
53
. 10.1016/j.est.2015.05.003
20.
Dubarry
,
M.
,
Baure
,
G.
, and
Devie
,
A.
,
2018
, “
Durability and Reliability of EV Batteries Under Electric Utility Grid Operations: Path Dependence of Battery Degradation
,”
J. Electrochem. Soc.
,
165
(
5
), pp.
A773
A783
. 10.1149/2.0421805jes
21.
Devie
,
A.
,
Dubarry
,
M.
, and
Liaw
,
B. Y.
,
2015
, “
Overcharge Study in Li4Ti5O12 Based Lithium-Ion Pouch Cell: I. Quantitative Diagnosis of Degradation Modes
,”
J. Electrochem. Soc.
,
162
(
6
), pp.
A1033
A1040
. 10.1149/2.0941506jes
22.
Liu
,
C.
,
Neale
,
Z. G.
, and
Cao
,
G.
,
2016
, “
Understanding Electrochemical Potentials of Cathode Materials in Rechargeable Batteries
,”
Mater. Today
,
19
(
2
), pp.
109
123
. 10.1016/j.mattod.2015.10.009
23.
Tarascon
,
J. M.
, and
Armand
,
M.
,
2001
, “
Issues and Challenges Facing Rechargeable Lithium Batteries
,”
Nature
,
414
(
6861
), pp.
359
367
. 10.1038/35104644
24.
Broussely
,
M.
,
Biensan
,
P.
,
Bonhomme
,
F.
,
Blanchard
,
P.
,
Herreyre
,
S.
,
Nechev
,
K.
, and
Staniewicz
,
R. J.
,
2005
, “
Main Aging Mechanisms in Li Ion Batteries
,”
J. Power Sources
,
146
(
1–2
), pp.
90
96
. 10.1016/j.jpowsour.2005.03.172
25.
Vetter
,
J.
,
Novák
,
P.
,
Wagner
,
M. R.
,
Veit
,
C.
,
Möller
,
K. C.
,
Besenhard
,
J. O.
,
Winter
,
M.
,
Wohlfahrt-Mehrens
,
M.
,
Vogler
,
C.
, and
Hammouche
,
A.
,
2005
, “
Ageing Mechanisms in Lithium-Ion Batteries
,”
J. Power Sources
,
147
(
1–2
), pp.
269
281
. 10.1016/j.jpowsour.2005.01.006
26.
Sarre
,
G.
,
Blanchard
,
P.
, and
Broussely
,
M.
,
2004
, “
Aging of Lithium-Ion Batteries
,”
J. Power Sources
,
127
(
1–2
), pp.
65
71
.10.1016/j.jpowsour.2003.09.008
27.
Kanevskii
,
L. S.
, and
Dubasova
,
V. S.
,
2005
, “
Degradation of Lithium-Ion Batteries and How to Fight It: A Review
,”
Russ. J. Electrochem.
,
41
(
1
), pp.
1
16
. 10.1007/s11175-005-0042-y
28.
Birkl
,
C. R.
,
Roberts
,
M. R.
,
McTurk
,
E.
,
Bruce
,
P. G.
, and
Howey
,
D. A.
,
2017
, “
Degradation Diagnostics for Lithium Ion Cells
,”
J. Power Sources
,
341
, pp.
373
386
. 10.1016/j.jpowsour.2016.12.011
29.
Uddin
,
K.
,
Moore
,
A. D.
,
Barai
,
A.
, and
Marco
,
J.
,
2016
, “
The Effects of High Frequency Current Ripple on Electric Vehicle Battery Performance
,”
Appl. Energy
,
178
, pp.
142
154
. 10.1016/j.apenergy.2016.06.033
30.
Groot
,
J.
,
2012
,
Division of Electric Power Engineering, Department of Energy and Environment
,
Chalmers University of Technology, Chalmers Bibliotek
,
Göteborg, Sweden
.
31.
Kabir
,
M. M.
, and
Demirocak
,
D. E.
,
2017
, “
Degradation Mechanisms in Li-Ion Batteries: A State-of-the-Art Review
,”
Int. J. Energ Res.
,
41
(
14
), pp.
1963
1986
. 10.1002/er.3762
32.
Lin
,
C.
,
Tang
,
A.
,
Mu
,
H.
,
Wang
,
W.
, and
Wang
,
C.
,
2015
, “
Aging Mechanisms of Electrode Materials in Lithium-Ion Batteries for Electric Vehicles
,”
J. Chem.
,
2015
(
104673
), pp.
1
11
. 10.1155/2015/104673
33.
Barai
,
A.
,
Uddin
,
K.
,
Dubarry
,
M.
,
Somerville
,
L.
,
McGordon
,
A.
,
Jennings
,
P.
, and
Bloom
,
I.
,
2019
, “
A Comparison of Methodologies for the Non-Invasive Characterisation of Commercial Li-Ion Cells
,”
Progr. Energy Combust. Sci.
,
72
, pp.
1
31
. 10.1016/j.pecs.2019.01.001
34.
Li
,
D.
,
Danilov
,
D. L.
,
Bergveld
,
H. J.
,
Eichel
,
R. A.
, and
Notten
,
P. H. L.
,
2019
,
Future Li-ion Batteries
,
A.
Eftekhari
, ed.,
Royal Society of Chemistry
,
London, UK
, pp.
220
250
.
35.
Palacin
,
M. R.
,
2018
, “
Understanding Ageing in Li-Ion Batteries: A Chemical Issue
,”
Chem. Soc. Rev.
,
47
(
13
), pp.
4924
4933
. 10.1039/c7cs00889a
36.
An
,
F.
,
Chen
,
L.
,
Huang
,
J.
,
Zhang
,
J.
, and
Li
,
P.
,
2016
, “
Rate Dependence of Cell-to-Cell Variations of Lithium-Ion Cells
,”
Sci. Rep.
,
6
(
35051
). 10.1038/srep35051
37.
Santhanagopalan
,
S.
, and
White
,
R. E.
,
2012
, “
Quantifying Cell-to-Cell Variations in Lithium Ion Batteries
,”
Int. J. Electrochem.
,
2012
(
395838
), pp.
1
10
. 10.1155/2012/395838
38.
Rumpf
,
K.
,
Naumann
,
M.
, and
Jossen
,
A.
,
2017
, “
Experimental Investigation of Parametric Cell-to-Cell Variation and Correlation Based on 1100 Commercial Lithium-Ion Cells
,”
J. Energy Storage
,
14
, pp.
224
243
. 10.1016/j.est.2017.09.010
39.
Lenze
,
G.
,
Bockholt
,
H.
,
Schilcher
,
C.
,
Froböse
,
L.
,
Jansen
,
D.
,
Krewer
,
U.
, and
Kwade
,
A.
,
2018
, “
Impacts of Variations in Manufacturing Parameters on Performance of Lithium-Ion-Batteries
,”
J. Electrochem. Soc.
,
165
(
2
), pp.
A314
A322
. 10.1149/2.1081802jes
40.
Dubarry
,
M.
,
Truchot
,
C.
,
Devie
,
A.
, and
Liaw
,
B. Y.
,
2015
, “
State-of-Charge Determination in Lithium-Ion Battery Packs Based on Two-Point Measurements in Life
,”
J. Electrochem. Soc.
,
162
(
6
), pp.
A877
A884
. 10.1149/2.0201506jes
41.
Baumhöfer
,
T.
,
Brühl
,
M.
,
Rothgang
,
S.
, and
Sauer
,
D. U.
,
2014
, “
Production Caused Variation in Capacity Aging Trend and Correlation to Initial Cell Performance
,”
J. Power Sources
,
247
, pp.
332
338
. 10.1016/j.jpowsour.2013.08.108
42.
Harris
,
S. J.
,
Harris
,
D. J.
, and
Li
,
C.
,
2017
, “
Failure Statistics for Commercial Lithium Ion Batteries: A Study of 24 Pouch Cells
,”
J. Power Sources
,
342
, pp.
589
597
. 10.1016/j.jpowsour.2016.12.083
43.
Rohr
,
S.
,
Müller
,
S.
,
Baumann
,
M.
,
Kerler
,
M.
,
Ebert
,
F.
,
Kaden
,
D.
, and
Lienkamp
,
M.
,
2017
, “
Quantifying Uncertainties in Reusing Lithium-Ion Batteries From Electric Vehicles
,”
Procedia Manuf.
,
8
, pp.
603
610
. 10.1016/j.promfg.2017.02.077
44.
Devie
,
A.
,
Baure
,
G.
, and
Dubarry
,
M.
,
2018
, “
Intrinsic Variability in the Degradation of a Batch of Commercial 18650 Lithium-Ion Cells
,”
Energies
,
11
(
5
), p.
1031
. 10.3390/en11051031
45.
Xiong
,
R.
,
Li
,
L.
, and
Tian
,
J.
,
2018
, “
Towards a Smarter Battery Management System: A Critical Review on Battery State of Health Monitoring Methods
,”
J. Power Sources
,
405
, pp.
18
29
. 10.1016/j.jpowsour.2018.10.019
46.
Waldmann
,
T.
,
Iturrondobeitia
,
A.
,
Kasper
,
M.
,
Ghanbari
,
N.
,
Aguesse
,
F.
,
Bekaert
,
E.
,
Daniel
,
L.
,
Genies
,
S.
,
Jimenez Gordon
,
I.
,
Loble
,
M.
,
De Vito
,
E.
, and
Wohlfahrt-Mehrens
,
M.
,
2016
, “
Review—Post-Mortem Analysis of Aged Lithium-Ion Batteries: Disassembly Methodology and Physico-Chemical Analysis Techniques
,”
J. Electrochem. Soc.
,
163
(
10
), pp.
A2149
A2164
. 10.1149/2.1211609jes
47.
Lu
,
J.
,
Wu
,
T.
, and
Amine
,
K.
,
2017
, “
State-of-the-Art Characterization Techniques for Advanced Lithium-Ion Batteries
,”
Nat. Energy
,
2
(
3
), p.
17011
. 10.1038/nenergy.2017.11
48.
Harks
,
P. P. R. M. L.
,
Mulder
,
F. M.
, and
Notten
,
P. H. L.
,
2015
, “
In Situ Methods for Li-Ion Battery Research: A Review of Recent Developments
,”
J. Power Sources
,
288
, pp.
92
105
. 10.1016/j.jpowsour.2015.04.084
49.
Wei
,
Z.
,
Zhao
,
J.
,
Zou
,
C.
,
Lim
,
T. M.
, and
Tseng
,
K. J.
,
2018
, “
Comparative Study of Methods for Integrated Model Identification and State of Charge Estimation of Lithium-Ion Battery
,”
J. Power Sources
,
402
, pp.
189
197
. 10.1016/j.jpowsour.2018.09.034
50.
Lucu
,
M.
,
Martinez-Laserna
,
E.
,
Gandiaga
,
I.
, and
Camblong
,
H.
,
2018
, “
A Critical Review on Self-Adaptive Li-Ion Battery Ageing Models
,”
J. Power Sources
,
401
, pp.
85
101
. 10.1016/j.jpowsour.2018.08.064
51.
Jafari
,
M.
,
Khan
,
K.
, and
Gauchia
,
L.
,
2018
, “
Deterministic Models of Li-Ion Battery Aging: It Is a Matter of Scale
,”
J. Energy Storage
,
20
, pp.
67
77
. 10.1016/j.est.2018.09.002
52.
Dubarry
,
M.
,
Devie
,
A.
, and
Liaw
,
B. Y.
,
2014
, “
The Value of Battery Diagnostics and Prognostics
,”
J. Energy Power Sources
,
1
(
5
), pp.
242
249
.
53.
Dubarry
,
M.
,
Truchot
,
C.
, and
Liaw
,
B. Y.
,
2012
, “
Synthesize Battery Degradation Modes via a Diagnostic and Prognostic Model
,”
J. Power Sources
,
219
, pp.
204
216
. 10.1016/j.jpowsour.2012.07.016
54.
Balewski
,
L.
, and
Brenet
,
J. P.
,
1967
, “
A New Method for the Study of the Electrochemical Reactivity of Manganese Dioxide
,”
Electrochem. Technol.
,
5
(
11–12
), pp.
527
531
.
55.
Thompson
,
A. H.
,
1978
, “
Lithium Ordering in LixTiS2
,”
Phys. Rev. Lett.
,
40
(
23
), pp.
1511
1514
. 10.1103/PhysRevLett.40.1511
56.
Barker
,
J.
,
Baldwin
,
D.
, and
Bott
,
D. C.
,
1989
, “
Electrochemical Voltage Spectroscopy: Dopant Diffusion in Durham Polyacetylene
,”
Synth. Met.
,
28
, pp.
D127
D134
. 10.1016/0379-6779(89)90682-6
57.
Dubarry
,
M.
,
Svoboda
,
V.
,
Hwu
,
R.
, and
Liaw
,
B. Y.
,
2006
, “
Incremental Capacity Analysis and Close-to-Equilibrium OCV Measurements to Quantify Capacity Fade in Commercial Rechargeable Lithium Batteries
,”
Electrochem. Solid-State Lett.
,
9
(
10
), pp.
A454
A457
. 10.1149/1.2221767
58.
Bloom
,
I.
,
Christophersen
,
J.
, and
Gering
,
K.
,
2005
, “
Differential Voltage Analyses of High-Power, Lithium-Ion Cells. 2. Applications
,”
J. Power Sources
,
139
(
1–2
), pp.
304
313
. 10.1016/j.jpowsour.2004.07.022
59.
Bloom
,
I.
,
Christophersen
,
J. P.
,
Abraham
,
D. P.
, and
Gering
,
K. L.
,
2006
, “
Differential Voltage Analyses of High-Power, Lithium-Ion Cells. 3. Another Anode Phenomenon
,”
J. Power Sources
,
157
(
1
), pp.
537
542
. 10.1016/j.jpowsour.2005.07.054
60.
Bloom
,
I.
,
Jansen
,
A. N.
,
Abraham
,
D. P.
,
Knuth
,
J.
,
Jones
,
S. A.
,
Battaglia
,
V. S.
, and
Henriksen
,
G. L.
,
2005
, “
Differential Voltage Analyses of High-Power, Lithium-Ion Cells. 1. Technique and Applications
,”
J. Power Sources
,
139
(
1–2
), pp.
295
303
. 10.1016/j.jpowsour.2004.07.021
61.
Honkura
,
K.
,
Takahashi
,
K.
, and
Horiba
,
T.
,
2011
, “
Capacity-Fading Prediction of Lithium-Ion Batteries Based on Discharge Curves Analysis
,”
J. Power Sources
,
196
(
23
), pp.
10141
10147
. 10.1016/j.jpowsour.2011.08.020
62.
Smith
,
A. J.
,
Burns
,
J. C.
, and
Dahn
,
J. R.
,
2011
, “
High-Precision Differential Capacity Analysis of LiMn2O4/Graphite Cells
,”
Electrochem. Solid-State Lett.
,
14
(
4
), p.
A39
. 10.1149/1.3543569
63.
Dahn
,
H. M.
,
Smith
,
A. J.
,
Burns
,
J. C.
,
Stevens
,
D. A.
, and
Dahn
,
J. R.
,
2012
, “
User-Friendly Differential Voltage Analysis Freeware for the Analysis of Degradation Mechanisms in Li-Ion Batteries
,”
J. Electrochem. Soc.
,
159
(
9
), pp.
A1405
A1409
. 10.1149/2.013209jes
64.
Baure
,
G.
,
Devie
,
A.
, and
Dubarry
,
M.
,
2019
, “
Battery Durability and Reliability Under Electric Utility Grid Operations: Path Dependence of Battery Degradation
,”
J. Electrochem. Soc.
,
166
(
10
), pp.
A1991
A2001
. 10.1149/2.0971910jes
65.
Zhang
,
N.
, and
Tang
,
H.
,
2012
, “
Dissecting Anode Swelling in Commercial Lithium-Ion Batteries
,”
J. Power Sources
,
218
, pp.
52
55
. 10.1016/j.jpowsour.2012.06.071
66.
Pfrang
,
A.
,
Kersys
,
A.
,
Kriston
,
A.
,
Sauer
,
D. U.
,
Rahe
,
C.
,
Käbitz
,
S.
, and
Figgemeier
,
E.
,
2018
, “
Long-Term Cycling Induced Jelly Roll Deformation in Commercial 18650 Cells
,”
J. Power Sources
,
392
, pp.
168
175
. 10.1016/j.jpowsour.2018.03.065
67.
Carter
,
R.
,
Huhman
,
B.
,
Love
,
C. T.
, and
Zenyuk
,
I. V.
,
2018
, “
X-Ray Computed Tomography Comparison of Individual and Parallel Assembled Commercial Lithium Iron Phosphate Batteries at End of Life After High Rate Cycling
,”
J. Power Sources
,
381
, pp.
46
55
. 10.1016/j.jpowsour.2018.01.087
68.
Carter
,
R.
,
Klein
,
E. J.
,
Atkinson
,
R. W.
, and
Love
,
C. T.
,
2019
, “
Mechanical Collapse as Primary Degradation Mode in Mandrel-Free 18650 Li-Ion Cells Operated at 0 °C
,”
J. Power Sources
,
437
. p.
226820
. 10.1016/j.jpowsour.2019.226820
69.
Dubarry
,
M.
,
Baure
,
G.
, and
Devie
,
A.
,
2018
, “
Durability and Reliability of EV Batteries Under Electric Utility Grid Operations: Path Dependence of Battery Degradation
,”
J. Electrochem. Soc.
,
165
(
5
), pp.
A773
A783
. 10.1149/2.0421805jes
70.
Bloom
,
I.
,
Trahey
,
L.
,
Abouimrane
,
A.
,
Belharouak
,
I.
,
Zhang
,
X.
,
Wu
,
Q.
,
Lu
,
W.
,
Abraham
,
D. P.
,
Bettge
,
M.
,
Elam
,
J. W.
,
Meng
,
X.
,
Burrell
,
A. K.
,
Ban
,
C.
,
Tenent
,
R.
,
Nanda
,
J.
, and
Dudney
,
N.
,
2014
, “
Effect of Interface Modifications on Voltage Fade in 0.5Li2MnO3·0.5LiNi0.375Mn0.375Co0.25O2 Cathode Materials
,”
J. Power Sources
,
249
, pp.
509
514
. 10.1016/j.jpowsour.2013.10.035
71.
Noh
,
H.-J.
,
Youn
,
S.
,
Yoon
,
C. S.
, and
Sun
,
Y.-K.
,
2013
, “
Comparison of the Structural and Electrochemical Properties of Layered Li[NixCoyMnz]O2 (x = 1/3, 0.5, 0.6, 0.7, 0.8 and 0.85) Cathode Material for Lithium-Ion Batteries
,”
J. Power Sources
,
233
, pp.
121
130
. 10.1016/j.jpowsour.2013.01.063
72.
Cao
,
Y.
,
Li
,
M.
,
Lu
,
J.
,
Liu
,
J.
, and
Amine
,
K.
,
2019
, “
Bridging the Academic and Industrial Metrics for Next-Generation Practical Batteries
,”
Nat. Nanotechnol.
,
14
(
3
), pp.
200
207
. 10.1038/s41565-019-0371-8
73.
Zheng
,
J.
,
Xu
,
P.
,
Gu
,
M.
,
Xiao
,
J.
,
Browning
,
N. D.
,
Yan
,
P.
,
Wang
,
C.
, and
Zhang
,
J.-G.
,
2015
, “
Structural and Chemical Evolution of Li- and Mn-Rich Layered Cathode Material
,”
Chem. Mater.
,
27
(
4
), pp.
1381
1390
. 10.1021/cm5045978
74.
Berecibar
,
M.
,
Devriendt
,
F.
,
Dubarry
,
M.
,
Villarreal
,
I.
,
Omar
,
N.
,
Verbeke
,
W.
, and
Van Mierlo
,
J.
,
2016
, “
Online State of Health Estimation on NMC Cells Based on Predictive Analytics
,”
J. Power Sources
,
320
, pp.
239
250
. 10.1016/j.jpowsour.2016.04.109
75.
Berecibar
,
M.
,
Garmendia
,
M.
,
Gandiaga
,
I.
,
Crego
,
J.
, and
Villarreal
,
I.
,
2016
, “
State of Health Estimation Algorithm of LiFePO4 Battery Packs Based on Differential Voltage Curves for Battery Management System Application
,”
Energy
,
103
, pp.
784
796
. 10.1016/j.energy.2016.02.163
76.
Wang
,
L.
,
Pan
,
C.
,
Liu
,
L.
,
Cheng
,
Y.
, and
Zhao
,
X.
,
2016
, “
On-Board State of Health Estimation of LiFePO4 Battery Pack Through Differential Voltage Analysis
,”
Appl. Energy
,
168
, pp.
465
472
. 10.1016/j.apenergy.2016.01.125
77.
Torai
,
S.
,
Nakagomi
,
M.
,
Yoshitake
,
S.
,
Yamaguchi
,
S.
, and
Oyama
,
N.
,
2016
, “
State-of-Health Estimation of LiFePO4/Graphite Batteries Based on a Model Using Differential Capacity
,”
J. Power Sources
,
306
, pp.
62
69
. 10.1016/j.jpowsour.2015.11.070
78.
Dubarry
,
M.
,
Berecibar
,
M.
,
Devie
,
A.
,
Anseán
,
D.
,
Omar
,
N.
, and
Villarreal
,
I.
,
2017
, “
State of Health Battery Estimator Enabling Degradation Diagnosis: Model and Algorithm Description
,”
J. Power Sources
,
360
, pp.
59
69
. 10.1016/j.jpowsour.2017.05.121
79.
Wang
,
L.
,
Zhao
,
X.
,
Liu
,
L.
, and
Pan
,
C.
,
2017
, “
State of Health Estimation of Battery Modules via Differential Voltage Analysis With Local Data Symmetry Method
,”
Electrochim. Acta
,
256
, pp.
81
89
. 10.1016/j.electacta.2017.10.025
80.
Li
,
Y.
,
Abdel-Monem
,
M.
,
Gopalakrishnan
,
R.
,
Berecibar
,
M.
,
Nanini-Maury
,
E.
,
Omar
,
N.
,
van den Bossche
,
P.
, and
Van Mierlo
,
J.
,
2018
, “
A Quick On-Line State of Health Estimation Method for Li-Ion Battery With Incremental Capacity Curves Processed by Gaussian Filter
,”
J. Power Sources
,
373
, pp.
40
53
. 10.1016/j.jpowsour.2017.10.092
81.
Zheng
,
L.
,
Zhu
,
J.
,
Dah-Chuan Lu
,
D.
,
Wang
,
G.
, and
He
,
T.
,
2018
, “
Incremental Capacity Analysis and Differential Voltage Analysis Based State of Charge and Capacity Estimation for Lithium-Ion Batteries
,”
Energy
,
150
, pp.
759
769
. 10.1016/j.energy.2018.03.023
82.
Li
,
X.
,
Wang
,
Z.
, and
Yan
,
J.
,
2019
, “
Prognostic Health Condition for Lithium Battery Using the Partial Incremental Capacity and Gaussian Process Regression
,”
J. Power Sources
,
421
, pp.
56
67
. 10.1016/j.jpowsour.2019.03.008
83.
Zhang
,
Y. C.
,
Briat
,
O.
,
Delétage
,
J.-Y.
,
Martin
,
C.
,
Chadourne
,
N.
, and
Vinassa
,
J.-M.
,
2018
, “
Efficient State of Health Estimation of Li-Ion Battery Under Several Ageing Types for Aeronautic Applications
,”
Microelectron. Reliab.
,
88–90
, pp.
1231
1235
. 10.1016/j.microrel.2018.07.038
84.
Stroe
,
Daniel-Ioan
, and
Schaltz
,
Erik
,
2018
, “
SOH Estimation of LMO/NMC-based Electric Vehicle Lithium-Ion Batteries Using the Incremental Capacity Analysis Technique
,”
IEEE Energy Conversion Congress and Exposition (ECCE)
,
Portland, OR
,
Sept. 23–27
, pp.
2720
2725
.
85.
Ma
,
Z.
,
Wang
,
Z.
,
Xiong
,
R.
, and
Jiang
,
J.
,
2018
, “
A Mechanism Identification Model Based State-of-Health Diagnosis of Lithium-Ion Batteries for Energy Storage Applications
,”
J. Cleaner Prod.
,
193
, pp.
379
390
. 10.1016/j.jclepro.2018.05.074
86.
Li
,
X.
,
Wang
,
Z.
,
Zhang
,
L.
,
Zou
,
C.
, and
Dorrell
,
D. D.
,
2019
, “
State-of-Health Estimation for Li-Ion Batteries by Combing the Incremental Capacity Analysis Method With Grey Relational Analysis
,”
J. Power Sources
,
410–411
, pp.
106
114
. 10.1016/j.jpowsour.2018.10.069
87.
Riviere
,
E.
,
Sari
,
A.
,
Venet
,
P.
,
Meniere
,
F.
, and
Bultel
,
Y.
,
2019
, “
Innovative Incremental Capacity Analysis Implementation for C/LiFePO4 Cell State-of-Health Estimation in Electrical Vehicles
,”
Batteries
,
5
(
2
), p.
37
. 10.3390/batteries5020037
88.
Ma
,
Z.
,
Yang
,
R.
, and
Wang
,
Z.
,
2019
, “
A Novel Data-Model Fusion State-of-Health Estimation Approach for Lithium-Ion Batteries
,”
Appl. Energy
,
237
, pp.
836
847
. 10.1016/j.apenergy.2018.12.071
89.
Schindler
,
S.
,
Baure
,
G.
,
Danzer
,
M. A.
, and
Dubarry
,
M.
,
2019
, “
Kinetics Accommodation in Li-Ion Mechanistic Modeling
,”
J. Power Sources
,
440
,
227117
. 10.1016/j.jpowsour.2019.227117
90.
Dubarry
,
M.
,
Pastor-Fernández
,
C.
,
Baure
,
G.
,
Yu
,
T. F.
,
Widanage
,
W. D.
, and
Marco
,
J.
,
2019
, “
Battery Energy Storage System Modeling: Investigation of Intrinsic Cell-to-Cell Variations
,”
J. Energy Storage
,
23
, pp.
19
28
. 10.1016/j.est.2019.02.016
91.
Dubarry
,
M.
,
Baure
,
G.
,
Pastor-Fernández
,
C.
,
Yu
,
T. F.
,
Widanage
,
W. D.
, and
Marco
,
J.
,
2019
, “
Battery Energy Storage System Modeling: A Combined Comprehensive Approach
,”
J. Energy Storage
,
21
, pp.
172
185
. 10.1016/j.est.2018.11.012
92.
Liu
,
X.
,
Ai
,
W.
,
Marlow
,
M. N.
,
Patel
,
Y.
, and
Wu
,
B.
,
2019
, “
The Effect of Cell-to-Cell Variations and Thermal Gradients on the Performance and Degradation of Lithium-Ion Battery Packs
,”
Appl. Energy
,
248
(
2
), pp.
489
499
. 10.1016/j.apenergy.2019.04.108
You do not currently have access to this content.