Abstract

A new type of separator for lithium-ion batteries (LIBs) has been developed using ultrathin micrometer-sized sodium borosilicate glass platelets coated directly on a battery electrode with a water-based binder. The coating process is described in detail, demonstrating coating thicknesses of the glass separator of less than 50 µm. The high-temperature stability has been investigated and it has been shown that the separator is dimensionally stable to at least 600 °C. With regard to the electrochemical performance, full-cell tests on graphite || lithium iron phosphate cells showed a very good behavior, according to which comparable properties of the electrode/separator compound to a commercial polymer-based separator were achieved. This glass separator/electrode composite shows an interesting property profile and is a temperature-stable alternative to conventional polymer-based separators.

References

References
1.
Koronis
,
G.
,
Silva
,
A.
, and
Fontul
,
M.
,
2013
, “
Green Composites: A Review of Adequate Materials for Automotive Applications
,”
Compos. Part B
,
44
(
1
), pp.
120
127
. 10.1016/j.compositesb.2012.07.004
2.
Lu
,
L.
,
Han
,
X.
,
Li
,
J.
,
Hua
,
J.
, and
Ouyang
,
M.
,
2013
, “
A Review on the Key Issues for Lithium-Ion Battery Management in Electric Vehicles
,”
J. Power Sources
,
226
, pp.
272
288
. 10.1016/j.jpowsour.2012.10.060
3.
Gerssen-Gondelach
,
S. J.
, and
Faaij
,
A. P. C.
,
2012
, “
Performance of Batteries for Electric Vehicles on Short and Longer Term
,”
J. Power Sources
,
212
, pp.
111
129
. 10.1016/j.jpowsour.2012.03.085
4.
Cairns
,
E. J.
, and
Albertus
,
P.
,
2010
, “
Batteries for Electric and Hybrid-Electric Vehicles
,”
Annu. Rev. Chem. Biomol. Eng.
,
1
(
1
), pp.
299
320
. 10.1146/annurev-chembioeng-073009-100942
5.
Zhang
,
X.
,
Sahraei
,
E.
, and
Wang
,
K.
,
2016
, “
Li-Ion Battery Separators, Mechanical Integrity and Failure Mechanisms Leading to Soft and Hard Internal Shorts
,”
Sci. Rep.
,
6
(
1
), p.
32578
. 10.1038/srep32578
6.
Park
,
J.-K.
(Hrsg.),
2012
,
Principles and Applications of Lithium Secondary Batteries
,
Wiley-VCH
,
Weinheim
.
7.
Linden
,
D.
, and
Reddy
,
T. B.
(Hrsg.),
2011
,
Linden's Handbook of Batteries
, 4th ed.,
McGraw-Hill
,
New York
.
8.
Babu
,
G.
,
Sawas
,
A.
,
Thangavel
,
N. K.
, and
Arava
,
L. M. R.
,
2018
, “
Two-Dimensional Material-Reinforced Separator for Li–Sulfur Battery
,”
J. Phys. Chem. C
,
122
(
20
), pp.
10765
10772
. 10.1021/acs.jpcc.8b02633
9.
Zhang
,
S. S.
,
2007
, “
A Review on the Separators of Liquid Electrolyte Li-Ion Batteries
,”
J. Power Sources
,
164
(
1
), pp.
351
364
. 10.1016/j.jpowsour.2006.10.065
10.
Arora
,
P.
, and
Zhang
,
Z.
,
2004
, “
Battery Separators
,”
Chem. Rev.
,
104
(
10
), pp.
4419
4462
. 10.1021/cr020738u
11.
Orendorff
,
C. J.
,
2012
, “
The Role of Separators in Lithium-Ion Cell Safety
,”
Interface Mag.
,
21
(
2
), pp.
61
65
. 10.1149/2.F07122if
12.
Sarmah
,
S. B.
,
Kalita
,
P.
,
Garg
,
A.
,
Niu
,
X.-d.
,
Zhang
,
X.-W.
,
Peng
,
X.
, and
Bhattacharjee
,
D.
,
2019
, “
A Review of State of Health Estimation of Energy Storage Systems: Challenges and Possible Solutions for Futuristic Applications of Li-Ion Battery Packs in Electric Vehicles
,”
ASME J. Electrochem. Energy Convers. Storage
,
16
(
4
), p.
040801
. 10.1115/1.4042987
13.
Masurkar
,
N.
,
Babu
,
G.
,
Porchelvan
,
S.
, and
Reddy Arava
,
L. M.
,
2018
, “
Millimeter-Scale Lithium Ion Battery Packaging for High-Temperature Sensing Applications
,”
J. Power Sources
,
399
, pp.
179
185
. 10.1016/j.jpowsour.2018.07.077
14.
Shi
,
C.
,
Dai
,
J.
,
Li
,
C.
,
Shen
,
X.
,
Peng
,
L.
,
Zhang
,
P.
,
Wu
,
D.
,
Sun
,
D.
, and
Zhao
,
J.
,
2017
, “
A Modified Ceramic-Coating Separator With High-Temperature Stability for Lithium-Ion Battery
,”
Polymers
,
9
(
12
), p.
159
. 10.3390/polym9050159
15.
Choi
,
J.-A.
,
Kim
,
S. H.
, and
Kim
,
D.-W.
,
2010
, “
Enhancement of Thermal Stability and Cycling Performance in Lithium-Ion Cells Through the Use of Ceramic-Coated Separators
,”
J. Power Sources
,
195
(
18
), pp.
6192
6196
. 10.1016/j.jpowsour.2009.11.020
16.
Kim
,
J. Y.
, and
Lim
,
D. Y.
,
2010
, “
Surface-Modified Membrane as A Separator for Lithium-Ion Polymer Battery
,”
Energies
,
3
(
4
), pp.
866
885
. 10.3390/en3040866
17.
Loveridge
,
M.
,
Remy
,
G.
,
Kourra
,
N.
,
Genieser
,
R.
,
Barai
,
A.
,
Lain
,
M.
,
Guo
,
Y.
,
Amor-Segan
,
M.
,
Williams
,
M.
,
Amietszajew
,
T.
,
Ellis
,
M.
,
Bhagat
,
R.
, and
Greenwood
,
D.
,
2018
, “
Looking Deeper Into the Galaxy (Note 7)
,”
Batteries
,
4
(
1
), p.
3
. 10.3390/batteries4010003
18.
Wang
,
Q.
,
Yu
,
Y.
,
Ma
,
J.
,
Zhang
,
N.
,
Zhang
,
J.
,
Liu
,
Z.
, and
Cui
,
G.
,
2016
, “
Electrospun Melamine Resin-Based Multifunctional Nonwoven Membrane for Lithium Ion Batteries at the Elevated Temperatures
,”
J. Power Sources
,
327
, pp.
196
203
. 10.1016/j.jpowsour.2016.07.063
19.
Song
,
J.
,
Ryou
,
M.-H.
,
Son
,
B.
,
Lee
,
J.-N.
,
Lee
,
D. J.
,
Lee
,
Y. M.
,
Choi
,
J. W.
, and
Park
,
J.-K.
,
2012
, “
Co-Polyimide-Coated Polyethylene Separators for Enhanced Thermal Stability of Lithium Ion Batteries
,”
Electrochim. Acta
,
85
, pp.
524
530
. 10.1016/j.electacta.2012.06.078
20.
Jiang
,
W.
,
Liu
,
Z.
,
Kong
,
Q.
,
Yao
,
J.
,
Zhang
,
C.
,
Han
,
P.
, and
Cui
,
G.
,
2013
, “
A High Temperature Operating Nanofibrous Polyimide Separator in Li-Ion Battery
,”
Solid State Ionics
,
232
, pp.
44
48
. 10.1016/j.ssi.2012.11.010
21.
Yanilmaz
,
M.
,
Dirican
,
M.
, and
Zhang
,
X.
,
2014
, “
Evaluation of Electrospun SiO2/Nylon 6,6 Nanofiber Membranes as a Thermally-Stable Separator for Lithium-Ion Batteries
,”
Electrochim. Acta
,
133
, pp.
501
508
. 10.1016/j.electacta.2014.04.109
22.
Yanilmaz
,
M.
, and
Zhang
,
X.
,
2015
, “
Polymethylmethacrylate/Polyacrylonitrile Membranes via Centrifugal Spinning as Separator in Li-Ion Batteries
,”
Polymers
,
7
(
4
), pp.
629
643
. 10.3390/polym7040629
23.
Yu
,
B.
,
Zhao
,
X.-M.
,
Jiao
,
X.-N.
, and
Qi
,
D.-Y.
,
2016
, “
Composite Nanofiber Membrane for Lithium-Ion Batteries Prepared by Electrostatic Spun/Spray Deposition
,”
ASME J. Electrochem. Energy Convers. Storage
,
13
(
1
), p.
011008
. 10.1115/1.4034030
24.
Susai
,
F. A.
,
Sclar
,
H.
,
Shilina
,
Y.
,
Penki
,
T. R.
,
Raman
,
R.
,
Maddukuri
,
S.
,
Maiti
,
S.
,
Halalay
,
I. C.
,
Luski
,
S.
,
Markovsky
,
B.
, and
Aurbach
,
D.
,
2018
, “
Horizons for Li-Ion Batteries Relevant to Electro-Mobility: High-Specific-Energy Cathodes and Chemically Active Separators
,”
Adv. Mater.
,
30
(
41
), p.
1801348
. 10.1002/adma.201801348
25.
Love
,
C. T.
,
2016
, “
Perspective on the Mechanical Interaction Between Lithium Dendrites and Polymer Separators at Low Temperature
,”
ASME J. Electrochem. Energy Convers. Storage
,
13
(
3
), p.
031004
. 10.1115/1.4034483
26.
Schadeck
,
U.
,
Kyrgyzbaev
,
K.
,
Gerdes
,
T.
,
Willert-Porada
,
M.
, and
Moos
,
R.
,
2018
, “
Porous and Non-Porous Micrometer-Sized Glass Platelets as Separators for Lithium-Ion Batteries
,”
J. Membr. Sci.
,
550
, pp.
518
525
. 10.1016/j.memsci.2017.10.061
27.
Schadeck
,
U.
,
Hahn
,
M.
,
Gerdes
,
T.
,
Krenkel
,
W.
,
Danzer
,
M. A.
, and
Moos
,
R.
,
2019
, “
Sodium Borosilicate Glass Separators as an Electrolyte Additive Donor for Improving the Electrochemical Performance of Lithium-Ion Batteries
,”
J. Electrochem. Soc.
,
166
(
14
), pp.
A3416
A3424
. 10.1149/2.1011914jes
28.
Schadeck
,
U.
,
Kyrgyzbaev
,
K.
,
Zettl
,
H.
,
Gerdes
,
T.
, and
Moos
,
R.
,
2018
, “
Flexible, Heat-Resistant, and Flame-Retardant Glass Fiber Nonwoven/Glass Platelet Composite Separator for Lithium-Ion Batteries
,”
Energies
,
11
(
4
), p.
999
. 10.3390/en11040999
29.
Oakes
,
L.
,
Hanken
,
T.
,
Carter
,
R.
,
Yates
,
W.
, and
Pint
,
C. L.
,
2015
, “
Roll-to-Roll Nanomanufacturing of Hybrid Nanostructures for Energy Storage Device Design
,”
ACS Appl. Mater. Interfaces
,
7
(
26
), pp.
14201
14210
. 10.1021/acsami.5b01315
30.
Baunach
,
M.
,
Jaiser
,
S.
,
Schmelzle
,
S.
,
Nirschl
,
H.
,
Scharfer
,
P.
, and
Schabel
,
W.
,
2016
, “
Delamination Behavior of Lithium-Ion Battery Anodes: Influence of Drying Temperature During Electrode Processing
,”
Drying Technol.
,
34
(
4
), pp.
462
473
. 10.1080/07373937.2015.1060497
31.
Zhou
,
G.
,
Li
,
L.
,
Wang
,
D.-W.
,
Shan
,
X.-Y.
,
Pei
,
S.
,
Li
,
F.
, and
Cheng
,
H.-M.
,
2015
, “
A Flexible Sulfur-Graphene-Polypropylene Separator Integrated Electrode for Advanced Li-S Batteries
,”
Adv. Mater.
,
27
(
4
), pp.
641
647
. 10.1002/adma.201404210
32.
Huang
,
X.
,
2011
, “
Separator Technologies for Lithium-ion Batteries
,”
J. Solid State Electrochem.
,
15
(
4
), pp.
649
662
. 10.1007/s10008-010-1264-9
33.
Hu
,
L.
,
Wu
,
H.
, and
Cui
,
Y.
,
2010
, “
Printed Energy Storage Devices by Integration of Electrodes and Separators Into Single Sheets of Paper
,”
Appl. Phys. Lett.
,
96
(
18
), p.
183502
. 10.1063/1.3425767
34.
Kyrgyzbaev
,
K.
,
Rosin
,
A.
, and
Willert-Porada
,
M.
,
2016
, “
Influence of Temperature on the Thickness of Ultrathin Particulate Glass Platelets
,”
Glass Technol.: Eur. J. Glass Sci. Technol., Part A
,
57
(
3
), pp.
95
100
. 10.13036/17533546.57.3.001
You do not currently have access to this content.