Abstract

Voltammetry, potentiometry, amperometry, and electrochemical impedance spectroscopy (EIS) were used to study practical polymer electrolyte membrane fuel cell (PEMFC) stacks in an attempt to validate the stack-tailored electrochemical methods and to show the range of information about a PEMFC stack obtainable with the methods. In-stack electrode voltammetry allowed to determine the type, i.e., the surface chemistry, of catalysts used to make the stack electrodes and to measure the electrodes’ true active surface areas (EASAs). Stack potentiometry gave the EASAs, too, but only after calibration of the method against voltammetry. The speed of the test is the advantage of the stack potentiometry. An amperometry-based protocol was introduced to measure the hydrogen permeability and electronic shorting of the stack membrane-electrode assemblies. Dependence of the H2 permeability on H2 pressure and the stack temperature was shown. EIS in the hydrogen-pump mode was used to study the anode and electrolyte membrane processes under load. Spectra were dominated by humidification effects, which allowed probing the external humidification distribution to the anodes in the stack. Cathode EIS spectra obtained by subtraction of H2-H2-mode spectra from H2-air-mode spectra were modeled and the ohmic, charge-transfer, and oxygen mass-transport contributions to the stack polarization under load were separated. The variability of these contributions across the stack was discussed.

References

References
1.
Appleby
,
A. J.
,
1995
, “
First International Symposium New Materials for Fuel Cell Systems
,”
New Materials for Fuel Cell Systems in New Materials for Fuel Cell Systems I
,
Montreal, Canada
,
July 9–13
, pp.
13
16
.
2.
Kraytsberg
,
A.
, and
Ein-Eli
,
Y.
,
2014
, “
Review of Advanced Materials for Proton Exchange Membrane Fuel Cells
,”
Energy Fuels
,
28
(
12
), pp.
7303
7330
. 10.1021/ef501977k
3.
Konno
,
N.
,
Mizuno
,
S.
,
Nakaji
,
H.
, and
Ishikawa
,
Y.
,
2015
, “
Development of Compact and High-Performance Fuel Cell Stack
,”
SAE Int. J. Alt. Power.
,
4
(
1
), pp.
123
129
. 10.4271/2015-01-1175
4.
Franchi
,
K.
,
Polevaya
,
O.
,
Gambini
,
F.
,
Burand
,
P.
, and
Blanchet
,
S.
,
2014
, “
Fuel Cell Durability Test Campaign Under Accelerated Stress Test
,”
International Workshop on PEMFC Stack and Stack Component Testing: Testing Procedures in Industry and Academia
,
Stuttgart, Germany
,
June 3–4
.
5.
Hamilton
,
P. J.
, and
Pollet
,
B. G.
,
2010
, “
Polymer Electrolyte Membrane Fuel Cell (PEMFC) Flow Field Plate: Design, Materials and Characterisation
,”
Fuel Cells
,
10
(
4
), pp.
489
509
. 10.1002/fuce.201000033
6.
Karimi
,
S.
,
Fraser
,
N.
,
Roberts
,
B.
, and
Foulkes
,
F. R.
,
2012
, “
A Review of Metallic Bipolar Plates for Proton Exchange Membrane Fuel Cells: Materials and Fabrication Methods
,”
Adv. Mater. Sci. Eng.
,
2012
, p.
22
. 10.1155/2012/828070\
7.
Planes
,
E.
,
Flandin
,
L.
, and
Alberola
,
N.
,
2012
, “
Polymer Composites Bipolar Plates for PEMFCs
,”
Energy Procedia
,
20
, pp.
311
323
. 10.1016/j.egypro.2012.03.031
8.
Zhang
,
G.
, and
Kandlikar
,
S. G.
,
2012
, “
A Critical Review of Cooling Techniques in Proton Exchange Membrane Fuel Cell Stacks
,”
Int. J. Hydrogen Energ.
,
37
(
3
), pp.
2412
2429
. 10.1016/j.ijhydene.2011.11.010
9.
Ye
,
D.-H.
, and
Zhan
,
Z.-G.
,
2013
, “
A Review on the Sealing Structures of Membrane Electrode Assembly of Proton Exchange Membrane Fuel Cells
,”
J. Power Sources
,
231
, pp.
285
292
. 10.1016/j.jpowsour.2013.01.009
10.
Park
,
S.
,
Lee
,
J.-W.
, and
Popov
,
B. N.
,
2012
, “
A Review of Gas Diffusion Layer in PEM Fuel Cells: Materials and Designs
,”
Int. J. Hydrogen Energ.
,
37
(
7
), pp.
5850
5865
. 10.1016/j.ijhydene.2011.12.148
11.
Liu
,
C.-Y.
, and
Sung
,
C.-C.
,
2012
, “
A Review of the Performance and Analysis of Proton Exchange Membrane Fuel Cell Membrane Electrode Assemblies
,”
J. Power Sources
,
220
, pp.
348
353
. 10.1016/j.jpowsour.2012.07.090
12.
Miller
,
M.
, and
Bazylak
,
A.
,
2011
, “
A Review of Polymer Electrolyte Membrane Fuel Cell Stack Testing
,”
J. Power Sources
,
196
(
2
), pp.
601
613
. 10.1016/j.jpowsour.2010.07.072
13.
Wu
,
J.
,
Yuan
,
X. Z.
,
Wang
,
H.
,
Blanco
,
M.
,
Martin
,
J. J.
, and
Zhang
,
J.
,
2008
, “
Diagnostic Tools in PEM Fuel Cell Research: Part I Electrochemical Techniques
,”
Int. J. Hydrogen Energ.
,
33
(
6
), pp.
1735
1746
. 10.1016/j.ijhydene.2008.01.013
14.
Mennola
,
T.
,
2004
, “
Mass Transport in Polymer Electrolyte Membrane Fuel Cells Using Natural Convection for Air Supply
,”
Ph.D thesis
,
University of Technology of Helsinki
,
Helsinki, Finland
. https://aaltodoc.aalto.fi/handle/123456789/2401
15.
Weng
,
F.-B.
,
Jou
,
B.-S.
,
Su
,
A.
,
Chan
,
S. H.
, and
Chi
,
P.-H.
,
2007
, “
Design, Fabrication and Performance Analysis of a 200 W PEM Fuel Cell Short Stack
,”
J. Power Sources
,
171
(
1
), pp.
179
185
. 10.1016/j.jpowsour.2006.12.061
16.
Ticianelli
,
E. A.
,
Derouin
,
C. R.
, and
Srinivasan
,
S.
,
1988
, “
Localization of Platinum in Low Catalyst Loading Electrodes to Attain High Power Densities in SPE Fuel Cells
,”
J. Electroanal. Chem.
,
251
(
2
), pp.
275
195
. 10.1016/0022-0728(88)85190-8
17.
Ruiu
,
T.
,
Dreizler
,
A. M.
,
Mitzel
,
J.
, and
Gülzow
,
E.
,
2016
, “
Evaluation of a 2.5 KWel Automotive Low Temperature PEM Fuel Cell Stack With Extended Operating Temperature Range up to 120 °C
,”
J. Power Sources
,
303
, pp.
257
266
. 10.1016/j.jpowsour.2015.10.056
18.
Piela
,
P.
,
Eickes
,
C.
,
Brosha
,
E.
,
Garzon
,
F.
, and
Zelenay
,
P.
,
2004
, “
Ruthenium Crossover in Direct Methanol Fuel Cell With Pt-Ru Black Anode
,”
J. Electrochem. Soc.
,
151
(
12
), pp.
A2053
A2059
. 10.1149/1.1814472
19.
Lee
,
K.-S.
,
Lee
,
B.-S.
,
Yoo
,
S. J.
,
Kim
,
S.-K.
,
Hwang
,
S. J.
,
Kim
,
H.-J.
,
Cho
,
E.
,
Henkensmeier
,
D.
,
Yun
,
J. W.
,
Nam
,
S. W.
,
Lim
,
T.-H.
, and
Jang
,
J. H.
,
2012
, “
Development of a Galvanostatic Analysis Technique as an In-Situ Diagnostic Tool for PEMFC Single Cells and Stacks
,”
Int. J. Hydrogen Energ.
,
37
(
7
), pp.
5891
5900
. 10.1016/j.ijhydene.2011.12.152
20.
Brightman
,
E.
,
Hinds
,
G.
, and
O’Malley
,
R.
,
2013
, “
In Situ Measurement of Active Catalyst Surface Area in Fuel Cell Stacks
,”
J. Power Sources
,
242
, pp.
244
254
. 10.1016/j.jpowsour.2013.05.046
21.
Hartung
,
I.
,
Kirsch
,
S.
,
Zihrul
,
P.
,
Müller
,
O.
, and
von Unwerth
,
T.
,
2016
, “
Improved Electrochemical In-Situ Characterization of Polymer Electrolyte Membrane Fuel Cell Stacks
,”
J. Power Sources
,
307
, pp.
280
288
. 10.1016/j.jpowsour.2015.12.070
22.
Piela
,
P.
,
Mitzel
,
J.
, and
Rosini
,
S.
,
2015
, “
Hydrogen Crossover in H2-PEMFC Stacks
,”
Test Module P-10d
,
European Stack-Test Project
,
Ulm, Germany
. http://stacktest.zsw-bw.de/fileadmin/stacktest/docs/Information_Material/Performance/TMs/TM_P-10d_Electrochemical_Method_Hydrogen_crossover.pdf
23.
Yuan
,
X. Z.
,
Sun
,
J. C.
,
Wang
,
H.
, and
Zhang
,
J.
,
2006
, “
AC Impedance Diagnosis of a 500 W PEM Fuel Cell Stack: Part II: Individual Cell Impedance
,”
J. Power Sources
,
161
(
2
), pp.
929
937
. 10.1016/j.jpowsour.2006.07.020
24.
Darowicki
,
K.
,
Janicka
,
E.
,
Mielniczek
,
M.
,
Zielinski
,
A.
,
Gawel
,
L.
,
Mitzel
,
J.
, and
Hunger
,
J.
,
2018
, “
Implementation of DEIS for Reliable Fault Monitoring and Detection in PEMFC Single Cells and Stacks
,”
Electrochim. Acta
,
292
, pp.
383
389
. 10.1016/j.electacta.2018.09.105
25.
Piela
,
P.
,
Fields
,
R.
, and
Zelenay
,
P.
,
2006
, “
Electrochemical Impedance Spectroscopy for Direct Methanol Fuel Cell Diagnostics
,”
J. Electrochem. Soc.
,
153
(
10
), pp.
A1902
A1913
. 10.1149/1.2266623
26.
Thomas
,
S. C.
,
Ren
,
X.
,
Gottesfeld
,
S.
, and
Zelenay
,
P.
,
2002
, “
Direct Methanol Fuel Cells: Progress in Cell Performance and Cathode Research
,”
Electrochim. Acta
,
47
(
22–23
), pp.
3741
3748
. 10.1016/S0013-4686(02)00344-4
27.
Piela
,
P.
,
2015
, “Methanol Crossover in DMFC Stacks,”
Test Module P-10e
,
European Stack-Test Project
,
Ulm, Germany
. http://stacktest.zsw-bw.de/fileadmin/stacktest/docs/Information_Material/Performance/TMs/TM_P-10e_Electrochemical_Method_Methanol_crossover.pdf
28.
Mitzel
,
J.
,
Gülzow
,
E.
,
Kabza
,
A.
,
Hunger
,
J.
,
Araya
,
S. S.
,
Piela
,
P.
,
Alecha
,
I.
, and
Tsotridis
,
G.
,
2016
, “
Identification of Critical Parameters for PEMFC Stack Performance Characterization and Control Strategies for Reliable and Comparable Stack Benchmarking
,”
Int. J. Hydrogen Energ.
,
41
(
46
), pp.
21415
21426
. 10.1016/j.ijhydene.2016.08.065
29.
Gazzarri
,
J.
,
Xia
,
Z.
,
Zhao
,
X.
,
Wang
,
Q.
,
Eikerling
,
M.
,
Liu
,
S.
, and
Xie
,
Z.
,
2009
, “
Estimation of Local Relative Humidity in Cathode Catalyst Layers of PEMFC
,”
ECS Trans.
,
25
, pp.
1203
1210
. 10.1149/1.3210675
30.
Ball
,
S. C.
,
Hudson
,
S. L.
,
Thompsett
,
D.
, and
Theobald
,
B.
,
2007
, “
An Investigation Into Factors Affecting the Stability of Carbons and Carbon Supported Platinum and Platinum/Cobalt Alloy Catalysts During 1.2 V Potentiostatic Hold Regimes at a Range of Temperatures
,”
J. Power Sources
,
171
(
1
), pp.
18
25
. 10.1016/j.jpowsour.2006.11.004
31.
Woods
,
R.
,
1979
, “Chemisorption at Electrodes: Hydrogen and Oxygen on Noble Metals and Their Alloys,”
Electroanalytical Chemistry
,
9
,
A. J.
Bard
, ed.,
Marcel Dekker, Inc
,
New York
, pp.
1
162
.
32.
Parthasarathy
,
A.
,
Dave
,
B.
,
Srinivasan
,
S.
, and
Appleby
,
A. J.
,
1992
, “
The Platinum Microelectrode/Nafion Interface: An Electrochemical Impedance Spectroscopic Analysis of Oxygen Reduction Kinetics and Nafion Characteristics
,”
J. Electrochem. Soc.
,
139
(
6
), pp.
1634
1641
. 10.1149/1.2069469
33.
Tsou
,
Y.-M.
,
Cao
,
L.
, and
De Castro
,
E.
,
2004
, “
Novel High Performance Platinum and Alloy Catalysts for PEMFC & DMFC
,”
Prepr. Pap.-Am. Chem. Soc., Div. Fuel Chem.
,
49
, pp.
679
680
.
34.
Beden
,
B.
,
Bewick
,
A.
,
Razaq
,
M.
, and
Weber
,
J.
,
1982
, “
On the Nature of Reduced CO2: An IR Spectroscopic Investigation
,”
J. Electroanal. Chem.
,
139
(
1
), pp.
203
206
. 10.1016/0022-0728(82)85116-4
35.
Gerteisen
,
D.
,
Zamel
,
N.
,
Sadeler
,
C.
,
Geiger
,
F.
,
Ludwig
,
V.
, and
Hebling
,
C.
,
2012
, “
Effect of Operating Conditions on Current Density Distribution and High Frequency Resistance in a Segmented PEM Fuel Cell
,”
Int. J. Hydrogen Energ.
,
37
(
9
), pp.
7736
7744
. 10.1016/j.ijhydene.2012.02.024
36.
Gomadam
,
P. M.
, and
Weidner
,
J. W.
,
2005
, “
Analysis of Electrochemical Impedance Spectroscopy in Proton Exchange Membrane Fuel Cells
,”
Int. J. Energy Res.
,
29
(
12
), pp.
1133
1151
. 10.1002/er.1144
37.
Holmström
,
N.
,
Wiezell
,
K.
, and
Lindbergh
,
G.
,
2012
, “
Studying low-Humidity Effects in PEFCs Using EIS. I. Experimental
,”
J. Electrochem. Soc.
,
159
(
8
), pp.
F369
F378
. 10.1149/2.005208jes
38.
Wiezell
,
K.
,
Holmström
,
N.
, and
Lindbergh
,
G.
,
2012
, “
Studying Low-Humidity Effects in PEFCs Using EIS. II. Modeling
,”
J. Electrochem. Soc.
,
159
(
8
), pp.
F379
F392
. 10.1149/2.006208jes
39.
Springer
,
T. E.
,
Zawodzinski
,
T. A.
,
Wilson
,
M. S.
, and
Gottesfeld
,
S.
,
1996
, “
Characterization of Polymer Electrolyte Fuel Cells Using AC Impedance Spectroscopy
,”
J. Electrochem. Soc.
,
143
(
2
), pp.
587
599
. 10.1149/1.1836485
40.
Reshetenkoa
,
T.
, and
Kulikovsky
,
A.
,
2016
, “
Comparison of Two Physical Models for Fitting PEM Fuel Cell Impedance Spectra Measured at a Low Air Flow Stoichiometry
,”
J. Electrochem. Soc.
,
163
(
3
), pp.
F238
F246
. 10.1149/2.0871603jes
You do not currently have access to this content.