Abstract

The current energy situation requires not only enormous energy in a brief period of time but clean energy as well. In this direction, a dye-sensitized solar cell (DSSC)—supercapacitor (SC) integrated energy device has been fabricated. This embedded energy system has a specific advantage such as easy manufacturing, low manufacturing costs, and flexible substrates compatibility. A natural photosensitizer was extracted from readily available beetroots and characterized using ultraviolet (UV)-visible spectroscopy. The zinc oxide semiconductor was synthesized using microwave technique and regarded as the DSSC photoanode material. The ZnO’s phase, purity, and morphology were investigated using X-ray diffraction (XRD) spectroscopy and scanning electron microscope. The iodine-doped cellulose acetate propionate (CAP) biopolymer electrolyte functions as the DSSC and supercapacitor electrolyte. The solid polymer electrolyte conductivity and dielectric studies were performed using electrochemical impedance spectroscopy (EIS). The laser-induced technique was used to synthesize graphene that plays a dual purpose as photocathode in DSSC and supercapacitor electrodes. The embedded energy unit from the DSSC-supercapacitor demonstrates a 6.75% fill factor representing its decent efficiency.

References

References
1.
O’Regan
,
B.
, and
Grätzel
,
M.
,
1991
, “
A Low Cost, High Effeciency Solar Cell Based on Dye-Sensitized Colloidal TiO2 Films
,”
Nature
,
353
(
6346
), pp.
737
740
. 10.1038/353737a0
2.
Lin
,
Z.
,
Goikolea
,
E.
,
Balducci
,
A.
,
Naoi
,
K.
,
Taberna
,
P. L.
,
Salanne
,
M.
,
Yushin
,
G.
, and
Simon
,
P.
,
2018
, “
Materials for Supercapacitors: When Li-Ion Battery Power is Not Enough
,”
Mater. Today
,
21
(
4
), pp.
419
436
. 10.1016/j.mattod.2018.01.035
3.
Noori
,
A.
,
El-Kady
,
M. F.
,
Rahmanifar
,
M. S.
,
Kaner
,
R. B.
, and
Mousavi
,
M. F.
,
2019
, “
Towards Establishing Standard Performance Metrics for Batteries, Supercapacitor and Beyond
,”
Chem.” Soc. Rev.
,
48
(
5
), pp.
1272
1341
. 10.1039/C8CS00581H
4.
Winter
,
M.
, and
Brodd
,
R. J.
,
2004
, “
What are Batteries, Fuel Cells, and Supercapacitors?
,”
Chem. Rev.
,
104
(
10
), pp.
4245
4269
. 10.1021/cr020730k
5.
Gong
,
J.
,
Liang
,
J.
, and
Sumathy
,
K.
,
2012
, “
Review on Dye-Sensitized Solar Cells (DSSCs): Fundamental Concepts and Novel Materials
,”
Renewable Sustainable Energy Rev.
,
16
(
8
), pp.
5848
5860
. 10.1016/j.rser.2012.04.044
6.
Zhang
,
Q.
,
Dandeneau
,
C. S.
,
Zhou
,
X.
, and
Cao
,
C.
,
2009
, “
ZnO Nanostructures for Dye-Sensitized Solar Cells
,”
Adv. Mater.
,
21
(
41
), pp.
4087
4108
. 10.1002/adma.200803827
7.
Baxter
,
J. B.
, and
Aydil
,
E. S.
,
2006
, “
Dye-Sensitized Solar Cells Based on Semiconductor Morphologies With ZnO Nanowires
,”
Sol. Energy Mater. Sol. Cells
,
90
(
5
), pp.
607
622
. 10.1016/j.solmat.2005.05.010
8.
Omar
,
A.
, and
Abdullah
,
H.
,
2014
, “
Electron Transport Analysis in Zinc Oxide-Based Dye-Sensitized Solar Cells: A Review
,”
Renewable Sustainable Energy Rev.
,
31
, pp.
149
157
. 10.1016/j.rser.2013.11.031
9.
Vittal
,
R.
, and
Ho
,
K. C.
,
2017
, “
Zinc Oxide Based Dye-Sensitized Solar Cells: A Review
,”
Renewable Sustainable Energy Rev.
,
70
, pp.
920
935
. 10.1016/j.rser.2016.11.273
10.
Narayan
,
M. R.
,
2012
, “
Review: Dye Sensitized Solar Cells Based on Natural Photosensitizers
,”
Renewable Sustainable Energy Rev.
,
16
(
1
), pp.
208
215
.
11.
Shalini
,
S.
,
Balasundara Prabhu
,
R.
,
Prasanna
,
S.
,
Mallick
,
T. K.
, and
Senthilarasu
,
S.
,
2015
, “
Review on Natural Dye Sensitized Solar Cells: Operation, Materials and Methods
,”
Renewable Sustainable. Energy Rev.
,
51
, pp.
1306
1325
. 10.1016/j.rser.2015.07.052
12.
Ngai
,
K. S.
,
Ramesh
,
S.
,
Ramesh
,
K.
, and
Juan
,
J. C.
,
2016
, “
A Review of Polymer Electrolytes: Fundamental, Approaches and Applications
,”
Ionics
,
22
(
8
), pp.
1259
1279
. 10.1007/s11581-016-1756-4
13.
Su’ait
,
M. S.
,
Rahman
,
M. Y. A.
, and
Ahmad
,
A.
,
2015
, “
Review on Polymer Electrolyte in Dye-Sensitized Solar Cells (DSSCs)
,”
Sol. Energy
,
115
, pp.
452
470
. 10.1016/j.solener.2015.02.043
14.
Ambrosi
,
A.
,
Chua
,
C. K.
,
Bonanni
,
A.
, and
Pumera
,
M.
,
2014
, “
Electrochemistry of Graphene and Related Materials
,”
Chem. Rev.
,
114
(
14
), pp.
7150
7188
. 10.1021/cr500023c
15.
Roy-Mayhew
,
J. D.
,
Bozym
,
D. J.
,
Punckt
,
C.
, and
Aksay
,
I. A.
,
2010
, “
Functionalized Graphene as a Catalytic Counter Electrode in Dye-Sensitized Solar Cells
,”
ACS Nano
,
4
(
10
), pp.
6203
6211
. 10.1021/nn1016428
16.
Tan
,
Y. B.
, and
Lee
,
J. M.
,
2013
, “
Graphene for Supercapacitor Applications
,”
J. Mater. Chem. A
,
1
(
47
), pp.
14814
14843
. 10.1039/c3ta12193c
17.
Sun
,
Y.
,
Wu
,
Q.
, and
Shi
,
G.
,
2011
, “
Graphene Based New Energy Materials
,”
Energy Environ. Sci.
,
4
(
4
), pp.
1113
1132
. 10.1039/c0ee00683a
18.
Zhang
,
Q.
,
Chou
,
T. P.
,
Russo
,
B.
,
Jenekhe
,
S. A.
, and
Cao
,
G.
,
2008
, “
Aggregation of ZnO Nanocrystallites for High Conversion Efficiency in Dye-Sensitized Solar Cells
,”
Angew. Chem. Int. Ed.
,
47
(
13
), pp.
2402
2406
. 10.1002/anie.200704919
19.
Sengupta
,
D.
,
Mondal
,
B.
, and
Mukherjee
,
K.
,
2015
, “
Visible Light Absorption and Photo-Sensitizing Properties of Spinach Leaves and Beetroot Extracted Natural Dyes
,”
Spectrochim. Acta, Part A
,
148
, pp.
85
92
. 10.1016/j.saa.2015.03.120
20.
Sudhakar
,
Y. N.
,
Selvakumar
,
M.
, and
Bhat
,
D. K.
,
2013
, “
LiClO4-Doped Plasticized Chitosan and Poly(Ethylene Glycol) Blend as Biodegradable Polymer Electrolyte for Supercapacitors
,”
Ionics
,
19
(
2
), pp.
277
285
. 10.1007/s11581-012-0745-5
21.
Sudhakar
,
Y. N.
, and
Selvakumar
,
M.
,
2012
, “
Lithium Perchlorate Doped Plasticized Chitosan and Starch Blend as Biodegradable Polymer Electrolyte for Supercapacitors
,”
Electrochim. Acta
,
78
, pp.
398
405
. 10.1016/j.electacta.2012.06.032
You do not currently have access to this content.