Abstract

Paper-based membraneless microfluidic fuel cell (PMMFC) has emerged as an alternative to conventional fuel cells. Extraction of optimum energy yield from these PMMFCs requires selection and study of various design and operating parameters. In this context, this paper presents reliability analysis and robust design of PMMFC composed of air-breathing graphite electrodes using multiple concentrations of formic acid and sulfuric acid as fuel and electrolyte, respectively. Combinations of four different grades of pencils are employed to prepare the electrodes using various pencil strokes. PMMFC is analyzed for two different orientations—horizontal and vertical, and the maximum power outputs were recorded. In order to analyze the combined effects of different factors governing the performance of PMMFC, a statistical approach of full factorial design is utilized to perform analysis of mean (ANOM), analysis of variance (ANOVA), signal to noise ratio (SNR), and desirability study. The response equations in terms of coded values of the factors are also derived. Rigorous desirability study, with the optimized parameters, concludes that the best desirability values for the horizontal and vertical arrangements of PMMFC are 0.8842 and 0.92768, respectively. Overall, this study helps to develop reliable, robust, and efficient PMMFC for many realistic applications.

References

References
1.
Kjeang
,
E.
,
Djilali
,
N.
, and
Sinton
,
D.
,
2009
, “
Microfluidic Fuel Cells: A Review
,”
J. Power Sources
,
186
(
2
), pp.
353
369
. 10.1016/j.jpowsour.2008.10.011
2.
Ferrigno
,
R.
,
Stroock
,
A. D.
,
Clark
,
T. D.
,
Mayer
,
M.
, and
Whitesides
,
G. M.
,
2003
, “
Membraneless Vanadium Redox Fuel Cell Using Laminar Flow
,”
J. Am. Chem. Soc.
,
125
(
7
), pp.
2014
2014
. 10.1021/ja025124l
3.
Shen
,
L. L.
,
Zhang
,
G. R.
,
Venter
,
T.
,
Biesalski
,
M.
, and
Etzold
,
B. J.
,
2019
, “
Towards Best Practices for Improving Paper-Based Microfluidic Fuel Cells
,”
Electrochim. Acta
,
298
(
3
), pp.
389
399
. 10.1016/j.electacta.2018.12.077
4.
Choban
,
E. R.
,
Markoski
,
L. J.
,
Wieckowski
,
A.
, and
Kenis
,
P. J.
,
2004
, “
Microfluidic Fuel Cell Based on Laminar Flow
,”
J. Power Sources
,
128
(
1
), pp.
54
60
. 10.1016/j.jpowsour.2003.11.052
5.
Kjeang
,
E.
,
Proctor
,
B. T.
,
Brolo
,
A. G.
,
Harrington
,
D. A.
,
Djilali
,
N.
, and
Sinton
,
D.
,
2007
, “
High-Performance Microfluidic Vanadium Redox Fuel Cell
,”
Electrochim. Acta
,
52
(
15
), pp.
4942
4946
. 10.1016/j.electacta.2007.01.062
6.
Eikerling
,
M.
,
Kornyshev
,
A. A.
,
Kuznetsov
,
A. M.
,
Ulstrup
,
J.
, and
Walbran
,
S.
,
2001
, “
Mechanisms of Proton Conductance in Polymer Electrolyte Membranes
,”
J. Phys. Chem. B
,
105
(
17
), pp.
3646
3662
. 10.1021/jp003182s
7.
Esquivel
,
J. P.
,
Del Campo
,
F. J.
,
De La Fuente
,
J. G.
,
Rojas
,
S.
, and
Sabate
,
N.
,
2014
, “
Microfluidic Fuel Cells on Paper: Meeting the Power Needs of Next Generation Lateral Flow Devices
,”
Energy Environ. Sci.
,
7
(
5
), pp.
1744
1749
. 10.1039/C3EE44044C
8.
Lal
,
S.
,
Janardhanan
,
V. M.
,
Deepa
,
M.
,
Sagar
,
A.
, and
Sahu
,
K. C.
,
2015
, “
Low Cost Environmentally Benign Porous Paper Based Fuel Cells for Micro-Nano Systems
,”
J. Electrochem. Soc.
,
162
(
14
), pp.
F1402
F1407
. 10.1149/2.0251514jes
9.
Pasala
,
V.
, and
Ramanujam
,
K.
,
2017
, “
Flexible Paper-Based Borohydride-Vanadium Fuel Cell for Powering Micro-Nanosystems
,”
Ionics
,
23
(
7
), pp.
1811
1817
. 10.1007/s11581-017-1987-z
10.
Dector
,
A.
,
Galindo-de-la-Rosa
,
J.
,
Amaya-Cruz
,
D. M.
,
Ortiz-Verdin
,
A.
,
Guerra-Balcázar
,
M.
,
Olivares-Ramírez
,
J. M.
,
Arriaga
,
L. G.
, and
Ledesma-García
,
J.
,
2017
, “
Towards Autonomous Lateral Flow Assays: Paper-Based Microfluidic Fuel Cell Inside an HIV-Test Using a Blood Sample as Fuel
,”
Int. J. Hydrogen Energy
,
42
(
46
), pp.
27979
27986
. 10.1016/j.ijhydene.2017.07.079
11.
Galvan
,
V.
,
Domalaon
,
K.
,
Tang
,
C.
,
Sotez
,
S.
,
Mendez
,
A.
,
Jalali-Heravi
,
M.
,
Purohit
,
K.
,
Pham
,
L.
,
Haan
,
J.
, and
Gomez
,
F. A.
,
2016
, “
An Improved Alkaline Direct Formate Paper Microfluidic Fuel Cell
,”
Electrophoresis
,
37
(
3
), pp.
504
510
. 10.1002/elps.201500360
12.
Yan
,
X.
,
Xu
,
A.
,
Zeng
,
L.
,
Gao
,
P.
, and
Zhao
,
T.
,
2018
, “
A Paper-Based Microfluidic Fuel Cell With Hydrogen Peroxide as Fuel and Oxidant
,”
Energy Technol.
,
6
(
1
), pp.
140
143
. 10.1002/ente.201700470
13.
Ehteshami
,
S. M. M.
,
Asadnia
,
M.
,
Tan
,
S. N.
, and
Chan
,
S. H.
,
2016
, “
Paper Based Membraneless Hydrogen Peroxide Fuel Cell Prepared by Micro-Fabrication
,”
J. Power Sources
,
301
(
1
), pp.
392
395
. 10.1016/j.jpowsour.2015.10.038
14.
Mahadeva
,
S. K.
,
Walus
,
K.
, and
Stoeber
,
B.
,
2015
, “
Paper as a Platform for Sensing Applications and Other Devices: A Review
,”
ACS Appl. Mater. Interfaces
,
7
(
16
), pp.
8345
8362
. 10.1021/acsami.5b00373
15.
Desmet
,
C.
,
Marquette
,
C. A.
,
Blum
,
L. J.
, and
Doumèche
,
B.
,
2016
, “
Paper Electrodes for Bioelectrochemistry: Biosensors and Biofuel Cells
,”
Biosens. Bioelectron.
,
76
(
2
), pp.
145
163
. 10.1016/j.bios.2015.06.052
16.
Esquivel
,
J. P.
,
Buser
,
J. R.
,
Lim
,
C. W.
,
Domínguez
,
C.
,
Rojas
,
S.
,
Yager
,
P.
, and
Sabate
,
N.
,
2017
, “
Single-Use Paper-Based Hydrogen Fuel Cells for Point-of-Care Diagnostic Applications
,”
J. Power Sources
,
342
(
2
), pp.
442
451
. 10.1016/j.jpowsour.2016.12.085
17.
Gonzalez-Guerrero
,
M. J.
,
del Campo
,
F. J.
,
Esquivel
,
J. P.
,
Giroud
,
F.
,
Minteer
,
S. D.
, and
Sabaté
,
N.
,
2016
, “
Paper Based Enzymatic Microfluidic Fuel Cell: From a Two-Stream Flow Device to a Single-Stream Lateral Flow Strip
,”
J. Power Sources
,
326
, pp.
410
416
. 10.1016/j.jpowsour.2016.07.014
18.
David
,
I. G.
,
Popa
,
D. E.
, and
Buleandra
,
M.
,
2017
, “
Pencil Graphite Electrodes: a Versatile Tool in Electroanalysis
,”
J. Anal. Methods Chem.
,
2017
, pp.
1
22
. 10.1155/2017/1905968
19.
Veerubhotla
,
R.
,
Bandopadhyay
,
A.
,
Das
,
D.
, and
Chakraborty
,
S.
,
2015
, “
Instant Power Generation From an Air-Breathing Paper and Pencil Based Bacterial Bio-Fuel Cell
,”
Lab Chip
,
15
(
12
), pp.
2580
2583
. 10.1039/C5LC00211G
20.
Hashemi
,
N.
,
Lackore
,
J. M.
,
Sharifi
,
F.
,
Goodrich
,
P. J.
,
Winchell
,
M. L.
, and
Hashemi
,
N.
,
2016
, “
A Paper-Based Microbial Fuel Cell Operating Under Continuous Flow Condition
,”
Technology
,
4
(
2
), pp.
98
103
. 10.1142/S2339547816400124
21.
Lee
,
S. H.
,
Ban
,
J. Y.
,
Oh
,
C. H.
,
Park
,
H. K.
, and
Choi
,
S.
,
2016
, “
A Solvent-Free Microbial-Activated air Cathode Battery Paper Platform Made With Pencil-Traced Graphite Electrodes
,”
Sci. Rep.
,
6
(
1
), pp.
28588
28598
. 10.1038/srep28588
22.
Dector
,
A.
,
Esquivel
,
J. P.
,
González
,
M. J.
,
Guerra-Balcázar
,
M.
,
Ledesma-García
,
J.
,
Sabaté
,
N.
, and
Arriaga
,
L. G.
,
2013
, “
Formic Acid Microfluidic Fuel Cell Evaluation in Different Oxidant Conditions
,”
Electrochim. Acta
,
92
(
3
), pp.
31
35
. 10.1016/j.electacta.2012.12.134
23.
Arun
,
R. K.
,
Halder
,
S.
,
Chanda
,
N.
, and
Chakraborty
,
S.
,
2014
, “
A Paper Based Self-Pumping and Self-Breathing Fuel Cell Using Pencil Stroked Graphite Electrodes
,”
Lab Chip
,
14
(
10
), pp.
1661
1664
. 10.1039/C4LC00029C
24.
Arun
,
R. K.
,
Gupta
,
V.
,
Singh
,
P.
,
Biswas
,
G.
, and
Chanda
,
N.
,
2019
, “
Selection of Graphite Pencil Grades for the Design of Suitable Electrodes for Stacking Multiple Single-Inlet Paper-Pencil Fuel Cells
,”
ChemistrySelect
,
4
(
1
), pp.
152
159
. 10.1002/slct.201802960
25.
Shaegh
,
S. A. M.
,
Nguyen
,
N. T.
, and
Chan
,
S. H.
,
2010
, “
An air-Breathing Microfluidic Formic Acid Fuel Cell with a Porous Planar Anode: Experimental and Numerical Investigations
,”
J. Micromech. Microeng.
,
20
(
10
), p.
105008
. 10.1088/0960-1317/20/10/105008
26.
Shaegh
,
S. A. M.
,
Nguyen
,
N. T.
, and
Chan
,
S. H.
,
2011
, “
A Review on Membraneless Laminar Flow-Based Fuel Cells
,”
Int. J. Hydrogen Energy
,
36
(
9
), pp.
5675
5694
. 10.1016/j.ijhydene.2011.01.063
27.
Montgomery
,
D. C.
,
2017
,
Design and Analysis of Experiments
,
John Wiley & Sons
,
New York
.
You do not currently have access to this content.