Abstract

Pt-enriched surface layer formation on Vulcan carbon-supported Pd (Pt@Pd/C) was successfully prepared through a simple and one-pot formic acid reduction approach without any stabilizing agent. The electrocatalytic performance of Pt@Pd/C catalyst toward an oxygen reduction reaction (ORR) in alkaline medium was studied and also compared with standard carbon-supported Pt (Pt/C) and Pd (Pd/C) catalysts. The Pt@Pd/C exhibits higher electrochemical active surface area (74.7 m2/g) and mass activity (1.38 mA/µg) than Pt/C, Pd/C, and contending with standard reported catalysts. In durability tests, Pt@Pd/C showed negligible loss of intrinsic activity (∼10%) after 10,000 cycles which confirmed improved stability than Pt-based catalysts for ORR in KOH medium. This improved electrocatalytic performance could be attributed to their structural characteristics of the Pt-enriched surface layer on Pd/C-core and the compressive lattice strain on Pt. The present investigation demonstrates the simple preparation procedure for surface-enriched Pt on Pd/C and its improved performance for ORR, suggesting that it is a promising contender to benchmark ORR catalysts for alkaline fuel cells.

References

References
1.
Yan
,
Z.
,
Gao
,
L.
,
Dai
,
C.
,
Zhang
,
M.
,
Lv
,
X.
, and
Shen
,
P. K.
,
2018
, “
Metal-Free Mesoporous Carbon With Higher Contents of Active N and S Codoping by Template Method for Superior ORR Efficiency to Pt/C
,”
Int. J. Hydrogen Energy
,
43
(
7
), pp.
3705
3715
. 10.1016/j.ijhydene.2018.01.013
2.
Xing
,
L.
,
Shi
,
W.
,
Su
,
H.
,
Xu
,
Q.
,
Das
,
P. K.
,
Mao
,
B.
, and
Scott
,
K.
,
2019
, “
Membrane Electrode Assemblies for PEM Fuel Cells: A Review of Functional Graded Design and Optimization
,”
Energy
,
177
, pp.
445
464
. 10.1016/j.energy.2019.04.084
3.
Weththasinha
,
H. A. B. M. D.
,
Yan
,
Z.
,
Gao
,
L.
,
Li
,
Y.
,
Pan
,
D.
,
Zhang
,
M.
,
Lv
,
X.
,
Wei
,
W.
, and
Xie
,
J.
,
2017
, “
Nitrogen Doped Lotus Stem Carbon as Electrocatalyst Comparable to Pt/C for Oxygen Reduction Reaction in Alkaline Media
,”
Int. J. Hydrogen Energy
,
42
(
32
), pp.
20560
20567
. 10.1016/j.ijhydene.2017.06.011
4.
Yan
,
Z.
,
Xie
,
J.
,
Jing
,
J.
,
Zhang
,
M.
,
Wei
,
W.
, and
Yin
,
S.
,
2012
, “
MoO2 Nanocrystals Down to 5 nm as Pt Electrocatalyst Promoter for Stable Oxygen Reduction Reaction
,”
Int. J. Hydrogen Energy
,
37
(
21
), pp.
15948
15955
. 10.1016/j.ijhydene.2012.08.033
5.
Mei
,
D.
,
Da He
,
Z.
,
Zheng
,
Y. L.
,
Jiang
,
D. C.
, and
Chen
,
Y.-X.
,
2014
, “
Mechanistic and Kinetic Implications on the ORR on a Au (100) Electrode: pH, Temperature and H–D Kinetic Isotope Effects
,”
Phys. Chem. Chem. Phys.
,
16
(
27
), pp.
13762
13773
. 10.1039/C4CP00257A
6.
Lin
,
B.
,
Qiao
,
G.
,
Chu
,
F.
,
Wang
,
J.
,
Feng
,
T.
,
Yuan
,
N.
,
Zhang
,
S.
,
Zhang
,
X.
, and
Ding
,
J.
,
2017
, “
Preparation and Characterization of Imidazolium Based Membranes for Anion Exchange Membrane Fuel Cell Applications
,”
Int. J. Hydrogen Energy
,
42
(
10
), pp.
6988
6996
. 10.1016/j.ijhydene.2016.11.169
7.
Ge
,
X.
,
Sumboja
,
A.
,
Wuu
,
D.
,
An
,
T.
,
Li
,
B.
,
Goh
,
F. T.
,
Hor
,
T. A.
,
Zong
,
Y.
, and
Liu
,
Z.
,
2015
, “
Oxygen Reduction in Alkaline Media: From Mechanisms to Recent Advances of Catalysts
,”
ACS Catal.
,
5
(
8
), pp.
4643
4667
. 10.1021/acscatal.5b00524
8.
Gewirth
,
A. A.
, and
Thorum
,
M. S.
,
2010
, “
Electroreduction of Dioxygen for Fuel-Cell Applications: Materials and Challenges
,”
Inorg. Chem.
,
49
(
8
), pp.
3557
3566
. 10.1021/ic9022486
9.
Sui
,
S.
,
Wang
,
X.
,
Zhou
,
X.
,
Su
,
Y.
,
Riffat
,
S.
, and
Liu
,
C.-J.
,
2017
, “
A Comprehensive Review of Pt Electrocatalysts for the Oxygen Reduction Reaction: Nanostructure, Activity, Mechanism and Carbon Support in PEM Fuel Cells
,”
J. Mater. Chem. A
,
5
(
5
), pp.
1808
1825
. 10.1039/C6TA08580F
10.
Xu
,
Q.
,
Zhang
,
F.
,
Xu
,
L.
,
Leung
,
P.
,
Yang
,
C.
, and
Li
,
H.
,
2017
, “
The Applications and Prospect of Fuel Cells in Medical Field: A Review
,”
Renew. Sustain. Energy Rev.
,
67
, pp.
574
580
. 10.1016/j.rser.2016.09.042
11.
Yao
,
D.
,
Jao
,
T.-C.
,
Zhang
,
W.
,
Xu
,
L.
,
Xing
,
L.
,
Ma
,
Q.
,
Xu
,
Q.
,
Li
,
H.
,
Pasupathi
,
S.
, and
Su
,
H.
,
2018
, “
In-Situ Diagnosis on Performance Degradation of High Temperature Polymer Electrolyte Membrane Fuel Cell by Examining Its Electrochemical Properties Under Operation
,”
Int. J. Hydrogen Energy
,
43
(
45
), pp.
21006
21016
. 10.1016/j.ijhydene.2018.09.103
12.
Liu
,
M.
,
Zhao
,
Z.
,
Duan
,
X.
, and
Huang
,
Y.
,
2019
, “
Nanoscale Structure Design for High-Performance Pt-Based ORR Catalysts
,”
Adv. Mater.
,
31
(
6
), p.
1802234
. 10.1002/adma.201802234
13.
Wang
,
Y.-J.
,
Zhao
,
N.
,
Fang
,
B.
,
Li
,
H.
,
Bi
,
X. T.
, and
Wang
,
H.
,
2015
, “
Carbon-Supported Pt-Based Alloy Electrocatalysts for the Oxygen Reduction Reaction in Polymer Electrolyte Membrane Fuel Cells: Particle Size, Shape, and Composition Manipulation and Their Impact to Activity
,”
Chem. Rev.
,
115
(
9
), pp.
3433
3467
. 10.1021/cr500519c
14.
Lu
,
Y.
,
Du
,
S.
, and
Steinberger-Wilckens
,
R.
,
2016
, “
One-Dimensional Nanostructured Electrocatalysts for Polymer Electrolyte Membrane Fuel Cells— A Review
,”
Appl. Catal. B
,
199
, pp.
292
314
. 10.1016/j.apcatb.2016.06.022
15.
Chaiburi
,
C.
,
Cermenek
,
B.
,
Pichler
,
B. E.
,
Grimmer
,
C.
, and
Hacker
,
V.
,
2018
, “
Ethanol: Tolerant Oxygen Reduction Reaction Catalysts in Alkaline Media
,”
ASME J. Electrochem. Energy Convers. Storage
,
16
(
2
), p.
021004
. 10.1115/1.4041979
16.
Dai
,
Y.
,
Sun
,
K.
, and
Li
,
Y.
,
2015
, “
Mo@Pt Core–Shell Nanoparticles as an Efficient Electrocatalyst for Oxygen Reduction Reaction
,”
J. Electroanal. Chem.
,
757
(
1
), pp.
94
99
. 10.1016/j.jelechem.2015.09.020
17.
Esfahani
,
A. M. R.
,
Vankova
,
S. K.
,
Videla
,
M. A. H. A.
, and
Specchia
,
S.
,
2017
, “
Innovative Carbon-Free Low Content Pt Catalyst Supported on Mo-Doped Titanium Suboxide (Ti3O5-Mo) for Stable and Durable Oxygen Reduction Reaction
,”
Appl. Catal. B
,
201
(
1
), pp.
419
429
. 10.1016/j.apcatb.2016.08.041
18.
Esfahani
,
A. M. R.
,
Ebralidze
,
I. I.
,
Specchia
,
S.
, and
Easton
,
E. B.
,
2018
, “
A Fuel Cell Catalyst Support Based on Doped Titanium Suboxides With Enhanced Conductivity, Durability and Fuel Cell Performance
,”
J. Mater. Chem. A
,
6
(
30
), pp.
14805
14815
. 10.1039/C8TA02470G
19.
Esfahani
,
A. M. R.
,
Rivera Gavidia
,
L. M.
,
García
,
G.
,
Pastor
,
E.
, and
Specchia
,
S.
,
2018
, “
Highly Active Platinum Supported on Mo-Doped Titanium Nanotubes Suboxide (Pt/TNTS-Mo) Electrocatalyst for Oxygen Reduction Reaction in PEMFC
,”
Renew. Energy
,
120
(
1
), pp.
209
219
. 10.1016/j.renene.2017.12.077
20.
Pillai
,
S. R.
,
Sonawane
,
S. H.
,
Gumfekar
,
S. P.
,
Suryawanshi
,
P. L.
,
Ashokkumar
,
M.
, and
Potoroko
,
I.
,
2019
, “
Continuous Flow Synthesis of Nanostructured Bimetallic Pt-Mo/C Catalysts in Milli-Channel Reactor for PEM Fuel Cell Application
,”
Mater. Chem. Phys.
,
237
(
1
), p.
121854
. 10.1016/j.matchemphys.2019.121854
21.
Altamirano-Gutiérrez
,
A.
,
Fernández
,
A.
, and
Varela
,
F. R.
,
2013
, “
Preparation and Characterization of Pt-CeO2 and Pt–Pd Electrocatalysts for the Oxygen Reduction Reaction in the Absence and Presence of Methanol in Alkaline Medium
,”
Int. J. Hydrogen Energy
,
38
(
28
), pp.
12657
12666
. 10.1016/j.ijhydene.2012.12.140
22.
Qian
,
Y.
,
Wen
,
W.
,
Adcock
,
P. A.
,
Jiang
,
Z.
,
Hakim
,
N.
,
Saha
,
M. S.
, and
Mukerjee
,
S.
,
2008
, “
PtM/C Catalyst Prepared Using Reverse Micelle Method for Oxygen Reduction Reaction in PEM Fuel Cells
,”
J. Phys. Chem. C
,
112
(
4
), pp.
1146
1157
. 10.1021/jp074929i
23.
Luo
,
L.
,
Zhu
,
F.
,
Tian
,
R.
,
Li
,
L.
,
Shen
,
S.
,
Yan
,
X.
, and
Zhang
,
J.
,
2017
, “
Composition-Graded Pd x Ni1–x Nanospheres With Pt Monolayer Shells as High-Performance Electrocatalysts for Oxygen Reduction Reaction
,”
ACS Catal.
,
7
(
8
), pp.
5420
5430
. 10.1021/acscatal.7b01775
24.
Zhang
,
Y.
,
Zhao
,
L.
,
Walton
,
J.
,
Liu
,
Z.
, and
Tang
,
Z.
,
2017
, “
Facile Fabrication of PtPd Alloyed Worm-Like Nanoparticles for Electrocatalytic Reduction of Oxygen
,”
Int. J. Hydrogen Energy
,
42
(
27
), pp.
17112
17121
. 10.1016/j.ijhydene.2017.05.167
25.
Jukk
,
K.
,
Kongi
,
N.
,
Tammeveski
,
K.
,
Solla-Gullón
,
J.
, and
Feliu
,
J. M.
,
2017
, “
Electroreduction of Oxygen on PdPt Alloy Nanocubes in Alkaline and Acidic Media
,”
ChemElectroChem
,
4
(
10
), pp.
2547
2555
. 10.1002/celc.201700588
26.
Lu
,
Y.
,
Jiang
,
Y.
, and
Chen
,
W.
,
2013
, “
PtPd Porous Nanorods With Enhanced Electrocatalytic Activity and Durability for Oxygen Reduction Reaction
,”
Nano Energy
,
2
(
5
), pp.
836
844
. 10.1016/j.nanoen.2013.02.006
27.
Lu
,
Y.
,
Du
,
S.
, and
Steinberger-Wilckens
,
R.
,
2016
, “
Three-Dimensional Catalyst Electrodes Based on PtPd Nanodendrites for Oxygen Reduction Reaction in PEFC Applications
,”
Appl. Catal. B
,
187
(
1
), pp.
108
114
. 10.1016/j.apcatb.2016.01.019
28.
Wang
,
Y.-J.
,
Long
,
W.
,
Wang
,
L.
,
Yuan
,
R.
,
Ignaszak
,
A.
,
Fang
,
B.
, and
Wilkinson
,
D. P.
,
2018
, “
Unlocking the Door to Highly Active ORR Catalysts for PEMFC Applications: Polyhedron-Engineered Pt-Based Nanocrystals
,”
Energy Environ. Sci.
,
11
(
2
), pp.
258
275
. 10.1039/C7EE02444D
29.
Wang
,
Y.
, and
Balbuena
,
P. B.
,
2005
, “
Design of Oxygen Reduction Bimetallic Catalysts: Ab-Initio-Derived Thermodynamic Guidelines
,”
J. Phys. Chem. B
,
109
(
40
), pp.
18902
18906
. 10.1021/jp0543779
30.
Yousaf
,
A. B.
,
Imran
,
M.
,
Uwitonze
,
N.
,
Zeb
,
A.
,
Zaidi
,
S. J.
,
Ansari
,
T. M.
,
Yasmeen
,
G.
, and
Manzoor
,
S.
,
2017
, “
Enhanced Electrocatalytic Performance of Pt3Pd1 Alloys Supported on CeO2/C for Methanol Oxidation and Oxygen Reduction Reactions
,”
J. Phys. Chem. C
,
121
(
4
), pp.
2069
2079
. 10.1021/acs.jpcc.6b11528
31.
Nørskov
,
J. K.
,
Bligaard
,
T.
,
Rossmeisl
,
J.
, and
Christensen
,
C. H.
,
2009
, “
Towards the Computational Design of Solid Catalysts
,”
Nat. Chem.
,
1
(
1
), pp.
37
46
. 10.1038/nchem.121
32.
Liu
,
M.
,
Zhang
,
R.
, and
Chen
,
W.
,
2014
, “
Graphene-Supported Nanoelectrocatalysts for Fuel Cells: Synthesis, Properties, and Applications
,”
Chem. Rev.
,
114
(
10
), pp.
5117
5160
. 10.1021/cr400523y
33.
Remona
,
A. M.
, and
Phani
,
K. L. N.
,
2010
, “
Methanol-Tolerant Oxygen Reduction Reaction at Pt–Pd/C Alloy Nanocatalysts
,”
ASME J. Electrochem. Energy Convers. Storage
,
8
(
1
), p.
011001
. 10.1115/1.4001759
34.
Yang
,
J.
,
Zhou
,
W.
,
Cheng
,
C. H.
,
Lee
,
J. Y.
, and
Liu
,
Z.
,
2009
, “
Pt-Decorated PdFe Nanoparticles as Methanol-Tolerant Oxygen Reduction Electrocatalyst
,”
ACS Appl. Mater. Interfaces
,
2
(
1
), pp.
119
126
. 10.1021/am900623e
35.
Choi
,
I.
,
Ahn
,
S. H.
,
Kim
,
J. J.
, and
Kwon
,
O. J.
,
2011
, “
Preparation of Pt Shell–Pd Core Nanoparticle With Electroless Deposition of Copper for Polymer Electrolyte Membrane Fuel Cell
,”
Appl. Catal. B
,
102
(
3–4
), pp.
608
613
. 10.1016/j.apcatb.2010.12.047
36.
Castegnaro
,
M. V.
,
Paschoalino
,
W. J.
,
Fernandes
,
M. R.
,
Balke
,
B. M.
,
Alves
,
M. C.
,
Ticianelli
,
E. A.
, and
Morais
,
J.
,
2017
, “
Pd–M/C (M = Pd, Cu, Pt) Electrocatalysts for Oxygen Reduction Reaction in Alkaline Medium: Correlating the Electronic Structure With Activity
,”
Langmuir
,
33
(
11
), pp.
2734
2743
. 10.1021/acs.langmuir.7b00098
37.
Liu
,
Z.-T.
,
Chen
,
H.-R.
, and
Lee
,
C.-L.
,
2017
, “
Promising Activity of Concave Pd@ Pd–Pt Nanocubes for the Oxygen Reduction Reaction
,”
Electrochim. Acta
,
226
(
1
), pp.
1
9
. 10.1016/j.electacta.2016.12.186
38.
Sasaki
,
K.
,
Naohara
,
H.
,
Cai
,
Y.
,
Choi
,
Y. M.
,
Liu
,
P.
,
Vukmirovic
,
M. B.
,
Wang
,
J. X.
, and
Adzic
,
R. R.
,
2010
, “
Core-Protected Platinum Monolayer Shell High-Stability Electrocatalysts for Fuel-Cell Cathodes
,”
Angew. Chem. Int. Ed.
,
49
(
46
), pp.
8602
8607
. 10.1002/anie.201004287
39.
Sasaki
,
K.
,
Naohara
,
H.
,
Choi
,
Y.
,
Cai
,
Y.
,
Chen
,
W.-F.
,
Liu
,
P.
, and
Adzic
,
R. R.
,
2012
, “
Highly Stable Pt Monolayer on PdAu Nanoparticle Electrocatalysts for the Oxygen Reduction Reaction
,”
Nat. Commun.
,
3
(
1
), p.
1115
. 10.1038/ncomms2124
40.
Adzic
,
R. R.
,
Zhang
,
J.
,
Sasaki
,
K.
,
Vukmirovic
,
M. B.
,
Shao
,
M.
,
Wang
,
J.
,
Nilekar
,
A. U.
,
Mavrikakis
,
M.
,
Valerio
,
J.
, and
Uribe
,
F.
,
2007
, “
Platinum Monolayer Fuel Cell Electrocatalysts
,”
Top. Catal.
,
46
(
3–4
), pp.
249
262
. 10.1007/s11244-007-9003-x
41.
Zhang
,
J.
,
Vukmirovic
,
M. B.
,
Xu
,
Y.
,
Mavrikakis
,
M.
, and
Adzic
,
R. R.
,
2005
, “
Controlling the Catalytic Activity of Platinum-Monolayer Electrocatalysts for Oxygen Reduction With Different Substrates
,”
Angew. Chem. Int. Ed.
,
44
(
14
), pp.
2132
2135
. 10.1002/anie.200462335
42.
Kim
,
Y.
,
Noh
,
Y.
,
Lim
,
E. J.
,
Lee
,
S.
,
Choi
,
S. M.
, and
Kim
,
W. B.
,
2014
, “
Star-Shaped Pd@ Pt Core–Shell Catalysts Supported on Reduced Graphene Oxide With Superior Electrocatalytic Performance
,”
J. Mater. Chem. A
,
2
(
19
), pp.
6976
6986
. 10.1039/C4TA00070F
43.
Liu
,
X.
,
Xu
,
G.
,
Chen
,
Y.
,
Lu
,
T.
,
Tang
,
Y.
, and
Xing
,
W.
,
2015
, “
A Strategy for Fabricating Porous PdNi@ Pt Core–Shell Nanostructures and Their Enhanced Activity and Durability for the Methanol Electrooxidation
,”
Sci. Rep.
,
5
(
1
), p.
7619
. 10.1038/srep07619
44.
Jiang
,
L.
,
Hsu
,
A.
,
Chu
,
D.
, and
Chen
,
R.
,
2009
, “
Oxygen Reduction Reaction on Carbon Supported Pt and Pd in Alkaline Solutions
,”
J. Electrochem. Soc.
,
156
(
3
), pp.
B370
B376
. 10.1149/1.3058586
45.
Narayanamoorthy
,
B.
,
Linkov
,
V.
,
Sita
,
C.
, and
Pasupathi
,
S.
,
2016
, “
Pt 3 M (M: Co, Ni and Fe) Bimetallic Alloy Nanoclusters as Support-Free Electrocatalysts With Improved Activity and Durability for Dioxygen Reduction in PEM Fuel Cells
,”
Electrocatalysis
,
7
(
5
), pp.
400
410
. 10.1007/s12678-016-0318-x
46.
Chen
,
Y.
,
Yang
,
F.
,
Dai
,
Y.
,
Wang
,
W.
, and
Chen
,
S.
,
2008
, “
Ni@ Pt Core−Shell Nanoparticles: Synthesis, Structural and Electrochemical Properties
,”
J. Phys. Chem. C
,
112
(
5
), pp.
1645
1649
. 10.1021/jp709886y
47.
Anderson
,
R. M.
,
Zhang
,
L.
,
Loussaert
,
J. A.
,
Frenkel
,
A. I.
,
Henkelman
,
G.
, and
Crooks
,
R. M.
,
2013
, “
An Experimental and Theoretical Investigation of the Inversion of Pd@ Pt Core@ Shell Dendrimer-Encapsulated Nanoparticles
,”
ACS Nano
,
7
(
10
), pp.
9345
9353
. 10.1021/nn4040348
48.
Wang
,
W.
,
Wang
,
Z.
,
Wang
,
J.
,
Zhong
,
C. J.
, and
Liu
,
C. J.
,
2017
, “
Highly Active and Stable Pt–Pd Alloy Catalysts Synthesized by Room-Temperature Electron Reduction for Oxygen Reduction Reaction
,”
Adv. Sci.
,
4
(
4
), p.
1600486
. 10.1002/advs.201600486
49.
Zhang
,
G.
,
Shao
,
Z.-G.
,
Lu
,
W.
,
Xiao
,
H.
,
Xie
,
F.
,
Qin
,
X.
,
Li
,
J.
,
Liu
,
F.
, and
Yi
,
B.
,
2013
, “
Aqueous-Phase Synthesis of Sub 10 nm Pdcore@ Ptshell Nanocatalysts for Oxygen Reduction Reaction Using Amphiphilic Triblock Copolymers as the Reductant and Capping Agent
,”
J. Phys. Chem. C
,
117
(
26
), pp.
13413
13423
. 10.1021/jp401375b
50.
Uddin
,
A. I.
,
Yaqoob
,
U.
,
Hassan
,
K.
, and
Chung
,
G.-S.
,
2016
, “
Effects of Pt Shell Thickness on Self-Assembly Monolayer Pd@ Pt Core–Shell Nanocrystals Based Hydrogen Sensing
,”
Int. J. Hydrogen Energy
,
41
(
34
), pp.
15399
15410
. 10.1016/j.ijhydene.2016.06.138
51.
Zhao
,
R.
,
Liu
,
Y.
,
Liu
,
C.
,
Xu
,
G.
,
Chen
,
Y.
,
Tang
,
Y.
, and
Lu
,
T.
,
2014
, “
Pd@ Pt Core–Shell Tetrapods as Highly Active and Stable Electrocatalysts for the Oxygen Reduction Reaction
,”
J. Mater. Chem. A
,
2
(
48
), pp.
20855
20860
. 10.1039/C4TA04917A
52.
Yang
,
X.
,
Wu
,
S.
,
Peng
,
L.
,
Hu
,
J.
,
Wang
,
X.
,
Fu
,
X.
,
Huo
,
Q.
, and
Guan
,
J.
,
2015
, “
Highly Dispersed Cobalt Oxide Nanoparticles on CMK-3 for Selective Oxidation of Benzyl Alcohol
,”
RSC Adv.
,
5
(
124
), pp.
102508
102515
. 10.1039/C5RA17118K
53.
Begum
,
H.
,
Ahmed
,
M. S.
,
Cho
,
S.
, and
Jeon
,
S.
,
2018
, “
Freestanding Palladium Nanonetworks Electrocatalyst for Oxygen Reduction Reaction in Fuel Cells
,”
Int. J. Hydrogen Energy
,
43
(
1
), pp.
229
238
. 10.1016/j.ijhydene.2017.10.172
54.
Narayanamoorthy
,
B.
,
Datta
,
K.
, and
Balaji
,
S.
,
2012
, “
Kinetics and Mechanism of Electrochemical Oxygen Reduction Using Platinum/Clay/Nafion Catalyst Layer for Polymer Electrolyte Membrane Fuel Cells
,”
J. Colloid Interface Sci.
,
387
(
1
), pp.
213
220
. 10.1016/j.jcis.2012.08.002
55.
Liu
,
Y.
,
Wang
,
X.
,
Zhao
,
B.
,
Shao
,
X.
, and
Huang
,
M.
,
2019
, “
Fe/Fe3C Nanoparticles Encapsulated in N-Doped Hollow Carbon Spheres as Efficient Electrocatalysts for the Oxygen Reduction Reaction Over a Wide pH Range
,”
Chem. Eur. J.
,
25
(
1
), pp.
9650
9657
. 10.1002/chem.201806111
56.
Vracar
,
L. M.
,
Sepa
,
D.
, and
Damjanovic
,
A.
,
1986
, “
Palladium Electrode in Oxygen-Saturated Aqueous Solutions Reduction of Oxygen in the Activation-Controlled Region
,”
J. Electrochem. Soc.
,
133
(
9
), pp.
1835
1839
. 10.1149/1.2109032
57.
Gu
,
J.
,
Zhang
,
Y.-W.
, and
Tao
,
F. F.
,
2012
, “
Shape Control of Bimetallic Nanocatalysts Through Well-Designed Colloidal Chemistry Approaches
,”
Chem. Soc. Rev.
,
41
(
24
), pp.
8050
8065
. 10.1039/c2cs35184f
58.
Zhang
,
H.
,
Yin
,
Y.
,
Hu
,
Y.
,
Li
,
C.
,
Wu
,
P.
,
Wei
,
S.
, and
Cai
,
C.
,
2010
, “
Pd@ Pt Core−Shell Nanostructures With Controllable Composition Synthesized by a Microwave Method and Their Enhanced Electrocatalytic Activity Toward Oxygen Reduction and Methanol Oxidation
,”
J. Phys. Chem. C
,
114
(
27
), pp.
11861
11867
. 10.1021/jp101243k
59.
Peng
,
Z.
, and
Yang
,
H.
,
2009
, “
Synthesis and Oxygen Reduction Electrocatalytic Property of Pt-on-Pd Bimetallic Heteronanostructures
,”
J. Am. Chem. Soc.
,
131
(
22
), pp.
7542
7543
. 10.1021/ja902256a
60.
Lima
,
F. H.
, and
Ticianelli
,
E. A.
,
2004
, “
Oxygen Electrocatalysis on Ultra-Thin Porous Coating Rotating Ring/Disk Platinum and Platinum–Cobalt Electrodes in Alkaline Media
,”
Electrochim. Acta
,
49
(
24
), pp.
4091
4099
. 10.1016/j.electacta.2004.04.002
61.
Lu
,
Y.
,
Jiang
,
Y.
,
Gao
,
X.
,
Wang
,
X.
, and
Chen
,
W.
,
2014
, “
Strongly Coupled Pd Nanotetrahedron/Tungsten Oxide Nanosheet Hybrids With Enhanced Catalytic Activity and Stability as Oxygen Reduction Electrocatalysts
,”
J. Am. Chem. Soc.
,
136
(
33
), pp.
11687
11697
. 10.1021/ja5041094
62.
Varga
,
T.
,
Ballai
,
G.
,
Vásárhelyi
,
L.
,
Haspel
,
H.
,
Kukovecz
,
Á.
, and
Kónya
,
Z.
,
2018
, “
Co4N/Nitrogen-Doped Graphene: A Non-Noble Metal Oxygen Reduction Electrocatalyst for Alkaline Fuel Cells
,”
Appl. Catal. B
,
237
(
1
), pp.
826
834
. 10.1016/j.apcatb.2018.06.054
63.
Li
,
W.
, and
Haldar
,
P.
,
2010
, “
Highly Active Carbon Supported Core–Shell PtNi@ Pt Nanoparticles for Oxygen Reduction Reaction
,”
Electrochem. Solid-State Lett.
,
13
(
5
), pp.
B47
B49
. 10.1149/1.3313347
64.
García-Contreras
,
M.
,
Fernández-Valverde
,
S.
, and
Basurto-Sánchez
,
R.
,
2015
, “
Investigation of Oxygen Reduction in Alkaline Media on Electrocatalysts Prepared by the Mechanical Alloying of Pt, Co, and Ni
,”
J. Appl. Electrochem.
,
45
(
10
), pp.
1101
1112
. 10.1007/s10800-015-0870-8
65.
Oezaslan
,
M.
,
Hasché
,
F.
, and
Strasser
,
P.
,
2012
, “
Oxygen Electroreduction on PtCo3, PtCo and Pt3Co Alloy Nanoparticles for Alkaline and Acidic PEM Fuel Cells
,”
J. Electrochem. Soc.
,
159
(
4
), pp.
B394
B405
. 10.1149/2.075204jes
66.
Cui
,
Z.
,
Yang
,
M.
,
Chen
,
H.
,
Zhao
,
M.
, and
DiSalvo
,
F. J.
,
2014
, “
Mesoporous TiN as a Noncarbon Support of Ag-Rich PtAg Nanoalloy Catalysts for Oxygen Reduction Reaction in Alkaline Media
,”
ChemSusChem
,
7
(
12
), pp.
3356
3361
. 10.1002/cssc.201402726
67.
Xiao
,
W.
,
Cordeiro
,
M. A. L.
,
Gong
,
M.
,
Han
,
L.
,
Wang
,
J.
,
Bian
,
C.
,
Zhu
,
J.
,
Xin
,
H. L.
, and
Wang
,
D.
,
2017
, “
Optimizing the ORR Activity of Pd Based Nanocatalysts by Tuning Their Strain and Particle Size
,”
J. Mater. Chem. A
,
5
(
20
), pp.
9867
9872
. 10.1039/C7TA02479G
68.
Stamenković
,
V.
,
Schmidt
,
T.
,
Ross
,
P.
, and
Marković
,
N.
,
2002
, “
Surface Composition Effects in Electrocatalysis: Kinetics of Oxygen Reduction on Well-Defined Pt3Ni and Pt3Co Alloy Surfaces
,”
J. Phys. Chem. B
,
106
(
46
), pp.
11970
11979
. 10.1021/jp021182h
69.
Stamenkovic
,
V. R.
,
Fowler
,
B.
,
Mun
,
B. S.
,
Wang
,
G.
,
Ross
,
P. N.
,
Lucas
,
C. A.
, and
Marković
,
N. M.
,
2007
, “
Improved Oxygen Reduction Activity on Pt3Ni (111) via Increased Surface Site Availability
,”
Science
,
315
(
5811
), pp.
493
497
. 10.1126/science.1135941
70.
Zhang
,
J.
,
Mo
,
Y.
,
Vukmirovic
,
M.
,
Klie
,
R.
,
Sasaki
,
K.
, and
Adzic
,
R.
,
2004
, “
Platinum Monolayer Electrocatalysts for O2 Reduction: Pt Monolayer on Pd (111) and on Carbon-Supported Pd Nanoparticles
,”
J. Phys. Chem. B
,
108
(
30
), pp.
10955
10964
. 10.1021/jp0379953
71.
Zhang
,
G.
,
Shao
,
Z.-G.
,
Lu
,
W.
,
Xie
,
F.
,
Xiao
,
H.
,
Qin
,
X.
, and
Yi
,
B.
,
2013
, “
Core–Shell Pt Modified Pd/C as an Active and Durable Electrocatalyst for the Oxygen Reduction Reaction in PEMFCs
,”
Appl. Catal. B
,
132
(
1
), pp.
183
194
. 10.1016/j.apcatb.2012.11.029
72.
Jung
,
N.
,
Sohn
,
Y.
,
Park
,
J. H.
,
Nahm
,
K. S.
,
Kim
,
P.
, and
Yoo
,
S. J.
,
2016
, “
High-Performance PtCux@ Pt Core–Shell Nanoparticles Decorated With Nanoporous Pt Surfaces for Oxygen Reduction Reaction
,”
Appl. Catal. B
,
196
(
1
), pp.
199
206
. 10.1016/j.apcatb.2016.05.028
73.
Tang
,
Q.
,
Jiang
,
L.
,
Qi
,
J.
,
Jiang
,
Q.
,
Wang
,
S.
, and
Sun
,
G.
,
2011
, “
One Step Synthesis of Carbon-Supported Ag/MnyOx Composites for Oxygen Reduction Reaction in Alkaline Media
,”
Appl. Catal. B
,
104
(
3–4
), pp.
337
345
. 10.1016/j.apcatb.2011.03.007
74.
Zhong
,
X.
,
Yu
,
H.
,
Wang
,
X.
,
Liu
,
L.
,
Jiang
,
Y.
,
Wang
,
L.
,
Zhuang
,
G.
,
Chu
,
Y.
,
Li
,
X.
, and
Wang
,
J.-G.
,
2014
, “
Pt@ Au Nanorods Uniformly Decorated on Pyridyne Cycloaddition Graphene as a Highly Effective Electrocatalyst for Oxygen Reduction
,”
ACS Appl. Mater. Interfaces
,
6
(
16
), pp.
13448
13454
. 10.1021/am5020452
75.
Lee
,
C.-L.
,
Yang
,
C.-C.
,
Liu
,
C.-R.
,
Liu
,
Z.-T.
, and
Ye
,
J.-S.
,
2014
, “
Pt-Coated Pd Nanocubes as Catalysts for Alkaline Oxygen Reduction Activity
,”
J. Power Sources
,
268
(
1
), pp.
712
717
. 10.1016/j.jpowsour.2014.06.112
76.
Feng
,
Y.
,
Shao
,
Q.
,
Ji
,
Y.
,
Cui
,
X.
,
Li
,
Y.
,
Zhu
,
X.
, and
Huang
,
X.
,
2018
, “
Surface-Modulated Palladium-Nickel Icosahedra as High-Performance Non-Platinum Oxygen Reduction Electrocatalysts
,”
Sci. Adv.
,
4
(
7
), p.
eaap8817
. 10.1126/sciadv.aap8817
77.
Zhou
,
X.
,
Chen
,
L.
,
Wan
,
G.
,
Chen
,
Y.
,
Kong
,
Q.
,
Chen
,
H.
, and
Shi
,
J.
,
2016
, “
Low Pt-Loaded Mesoporous Sodium Germanate as a High-Performance Electrocatalyst for the Oxygen Reduction Reaction
,”
ChemSusChem
,
9
(
17
), pp.
2337
2342
. 10.1002/cssc.201600785
You do not currently have access to this content.