Abstract

This study presents a new sustainable polygeneration system (power, heat, cool, and freshwater) based on a solid oxide fuel cell (SOFC) system integrated with an absorption chiller and freshwater desalination system. The proposed system is based on the idea of gasifying the municipal waste, producing syngas serving as fuel for the polygeneration system. Such advanced waste to energy systems when improved is self-sustainable, less disposal to sanitary landfills, saving large municipal fields for other human activity and considerable less environmental impact. The study shows that for a plant with about 130 kW net power, the energy efficiency may be more than 92% including electricity, cooling, and freshwater production. If water desalination and absorption chiller are connected in parallel as a bottoming cycle for the fuel cell plant then cooling and freshwater productions will be about 129 kW and 174 l/h, respectively.

References

References
1.
Lee
,
K. H.
, and
Strand
,
R. K.
,
2009
, “
SOFC Cogeneration System for Building Applications, Part 2: System Configuration and Operating Condition Design
,”
Renewable Energy
,
34
(
12
), pp.
2839
2846
. 10.1016/j.renene.2009.04.012
2.
Niessen
,
W. R.
,
2010
,
Combustion and Incineration Processes: Applications in Environmental Engineering
, 4th ed.,
CRC Press
,
MA
.
3.
Buah
,
W. K.
,
Cunliffe
,
A. M.
, and
Williams
,
P. T.
,
2007
, “
Characterization of Products From the Pyrolysis of Municipal Solid Waste
,”
IChemE
,
85
(
B5
), pp.
450
457
. 10.1205/psep07024
4.
Arafat
,
H. A.
, and
Jijakli
,
K.
,
2013
, “
Modeling and Comparative Assessment of Municipal Solid Waste Gasification for Energy Production
,”
Waste Manage.
,
33
(
8
), pp.
1704
1713
. 10.1016/j.wasman.2013.04.008
5.
Couto
,
N. D.
,
Silva
,
V. B.
, and
Rouboa
,
A.
,
2016
, “
Thermodynamic Evaluation of Portuguese Municipal Solid Waste Gasification
,”
J. Cleaner Prod.
,
139
, pp.
622
635
. 10.1016/j.jclepro.2016.08.082
6.
Ionescu
,
G.
,
Rada
,
E. C.
,
Ragazzi
,
M.
,
Marculescu
,
C.
,
Badea
,
A.
, and
Apostol
,
T.
,
2013
, “
Integrated Municipal Solid Waste Scenario Model Using Advanced Pretreatment and Waste to Energy Processes
,”
Energy Convers. Manage.
,
76
, pp.
1083
1092
. 10.1016/j.enconman.2013.08.049
7.
Bandara
,
N. J. G. J.
,
Hettiaratchi
,
J. P. A.
,
Wirasinghe
,
S. C.
, and
Pilapiiya
,
S.
,
2007
, “
Relation of Waste Generation and Composition to Socio-Economic Factors: A Case Study
,”
Environ. Monit. Assess.
,
135
(
1–3
), pp.
31
39
. 10.1007/s10661-007-9705-3
8.
Caton
,
P. A.
,
Carr
,
M. A.
,
Kim
,
S. S.
, and
Beautyman
,
M. J.
,
2010
, “
Energy Recovery From Waste Food by Combustion or Gasification With the Potential for Regenerative Dehydration: A Case Study
,”
Energy Convers. Manage.
,
51
(
6
), pp.
1157
1169
. 10.1016/j.enconman.2009.12.025
9.
Zhao
,
L.
,
Wang
,
H.
,
Qing
,
S.
, and
Liu
,
H.
,
2010
, “
Characteristics of Gaseous Product From Municipal Solid Waste Gasification With Hot Blast Furnace Slag
,”
J. Nat. Gas Chem.
,
19
(
4
), pp.
403
408
. 10.1016/S1003-9953(09)60087-6
10.
Riensche
,
E.
,
Achenbach
,
E.
,
Froning
,
D.
,
Haines
,
M. R.
,
Heidug
,
W. K.
,
Lokurlu
,
A.
, and
Adrian
,
S.
,
2000
, “
Clean Combined-Cycle SOFC Power Plant–Cell Modeling and Process Analysis
,”
Power Sources
,
86
(
1–2
), pp.
404
410
. 10.1016/S0378-7753(99)00490-5
11.
Rokni
,
M.
,
2012
, “
Thermodynamic Analysis of an Integrated Gasification Plant with Solid Oxide Fuel Cell and Steam Cycle
,”
J. Green
,
2
(
2–3
), pp.
71
86
. 10.1515/green-2011-0022
12.
Rokni
,
M.
,
2013
, “
Thermodynamic Analysis of SOFC (Solid Oxide Fuel Cell)—Stirling Hybrid Plants Using Alternative Fuels
,”
Energy
,
61
, pp.
87
97
. 10.1016/j.energy.2013.06.001
13.
Tippawan
,
P.
,
Arpornwichanop
,
A.
, and
Dincer
,
I.
,
2015
, “
Energy and Exergy Analysis of an Ethanol-Fueled Solid Oxide Fuel Cell for a Trigeneration System
,”
Energy
,
87
, pp.
228
239
. 10.1016/j.energy.2015.04.072
14.
Joneydi Shariatzadeh
,
O.
,
Refahi
,
A. H.
,
Rahmani
,
M.
, and
Abolhassani
,
S. S.
,
2015
, “
Economic Optimisation and Thermodynamic Modelling of SOFC tri-Generation System fed by Biogas
,”
Energy Convers. Manage.
,
105
, pp.
772
781
. 10.1016/j.enconman.2015.08.026
15.
IEA
,
Cogeneration and Renewables, Solutions for a low-energy carbon future
.
16.
Rong
,
A.
, and
Lahdelma
,
R.
,
2016
, “
Role of Polygeneration in Sustainable Energy System Development Challenges and Opportunities From Optimization Viewpoints
,”
Renewable Sustainable Energy Rev.
,
53
, pp.
363
371
. 10.1016/j.rser.2015.08.060
17.
Azhar
,
M. S.
,
Rizvi
,
G.
, and
Dincer
,
I.
,
2017
, “
Integration of Renewable Energy Based Multigeneration System With Desalination
,”
Desalination
,
404
, pp.
72
78
. 10.1016/j.desal.2016.09.034
18.
Calise
,
F.
,
Cipollina
,
A.
,
Denticed’Accadia
,
M.
, and
Piacentino
,
A.
,
2014
, “
A Novel Renewable Polygeneration System for a Small Mediterranean Volcanic Island for the Combined Production of Energy and Water: Dynadynamic Simulation and Economic Assessment
,”
Appl. Energy
,
135
, pp.
675
693
. 10.1016/j.apenergy.2014.03.064
19.
Ng
,
K. S.
,
Zhang
,
N.
, and
Sadhukhan
,
J.
,
2013
, “
Techno-economic Analysis of Polygeneration Systems With Carbon Capture and Storage and CO2 Reuse
,”
Chem. Eng. J.
,
219
, pp.
96
108
. 10.1016/j.cej.2012.12.082
20.
Elmegaard
,
B.
and
Houbak
,
N.
,
2005
, “
DNA—A General Energy System Simulation Tool
,”
Proceeding of SIMS 2005
J.
Amundsen
,
H. I.
Andersson
,
E.
Celledoni
,
T.
Gravdahl
,
F. A.
Michelsen
,
H. R.
Nagel
, and
T.
Natvig
, eds.,
Trondheim, Norway
,
Oct. 13–14
, pp.
43
52
.
21.
Smith
,
J. M.
,
Van Ness
,
H. C.
, and
Abbott
,
M. M.
,
2005
,
Introduction to Chemical Engineering Thermodynamics
, 7th ed.,
McGraw-Hill
,
Boston
.
22.
Rokni
,
M.
,
2015
, “
Thermodynamic Analyses of Municipal Solid Waste Gasification Plant Integrated With Solid Oxide Fuel Cell and Stirling Hybrid System
,”
Hydrogen Energy
,
40
(
24
), pp.
7855
7869
. 10.1016/j.ijhydene.2014.11.046
23.
Edjabou
,
M. E.
,
Jensen
,
M. B.
,
Götze
,
R.
,
Pivnenko
,
K.
,
Petersen
,
C.
,
Scheutz
,
C.
, and
Astrup
,
F. T.
,
2015
, “
Municipal Solid Waste Composition: Sampling Methodology, Statistical Analyses, and Case Study Evaluation
,”
Waste Manage.
,
36
, pp.
12
23
. 10.1016/j.wasman.2014.11.009
24.
Petersen
,
T. F.
,
Houbak
,
N.
, and
Elmegaard
,
B.
,
2006
, “
A Zero-Dimensional Model of a 2nd Generation Planar SOFC With Calibrated Parameters
,”
Int. J. Thermodynamic
,
9
(
4
), pp.
161
169
.
25.
Christiansen
,
N.
,
Primdahl
,
S.
,
Wandel
,
M.
,
Ramousse
,
S.
, and
Hagen
,
A.
,
2013
, “
Status of the Solid Oxide Fuel Cell Development at Topsoe Fuel Cell A/S and DTU Energy Conversion
,”
J. Electrochem. Soc.
,
57
(
1
), pp.
43
52
. 10.1149/05701.0043ecst
26.
Holtappels
,
P.
,
DeHaart
,
L. G. J.
,
Stimming
,
U.
,
Vinke
,
I. C.
, and
Mogensen
,
M.
,
1999
, “
Reaction of CO/CO2 gas Mixtures on Ni-YSZ Cermet Electrode
,”
Appl. Electrochem.
,
29
(
5
), pp.
561
568
. 10.1023/A:1003446721350
27.
Prentice
,
G.
,
1991
,
Electrochemical Engineering Principles
,
Prentice Hall International
,
Houston, TX
.
28.
Zhu
,
H.
, and
Kee
,
R. J.
,
2003
, “
A General Mathematical Model for Analyzing the Performance of Fuel-Cell Membrane-Electrode Assemblies
,”
Power Sources
,
117
(
1–2
), pp.
61
74
. 10.1016/S0378-7753(03)00358-6
29.
Costamagna
,
P.
,
Selimovic
,
A.
,
Del Borghi
,
M.
, and
Agnew
,
G.
,
2004
, “
Electrochemical Model of the Integrated Planar Solid Oxide Fuel Cell (IP-SOFC)
,”
Chem. Eng.
,
102
(
1
), pp.
61
69
. 10.1016/j.cej.2004.02.005
30.
Kromp
,
A.
,
Leonide
,
A.
,
Timmermann
,
H.
,
Weber
,
A.
, and
Ivers-Tiffée
,
E.
,
2010
, “
Internal Reforming Kinetics in SOFC-Anodes
,”
ECS Trans.
,
28
(
11
), pp.
205
215
. 10.1149/1.3495843
31.
Misra
,
R. D.
,
Sahoo
,
P. K.
, and
Gupta
,
A.
,
2005
, “
Thermoeconomic Optimization of a LiBr/H2O Absorption Chiller Using Structural Method
,”
Energy Resour. Technol.
,
127
(
2
), pp.
119
124
. 10.1115/1.1830049
32.
Patek
,
J.
, and
Klomfar
,
J. A.
,
2006
, “
Computationally Effective Formulation of the Thermodynamic Properties of LiBr-H2O Solutions From 273 to 500 K Over Full Composition Range
,”
Int. J. Refriger.
,
29
(
4
), pp.
566
578
. 10.1016/j.ijrefrig.2005.10.007
33.
Johnson Controls
,
2011
, “
Model YPC 2-Stage Steam-Fired Absorption Chiller Style D
.”
Tech. Rep. Form: 155.19-EG3 (1011)
.
Printed in Milwaukee, USA
, pp.
1
24
. https://ecochillers.com/manual/York%20Manual/YPC_Res_Engineering%20Guide.pdf. Accessed August 29, 2018.
34.
Herold
,
K. E.
,
Radermacher
,
R.
, and
Klein
,
S. A.
,
1996
,
Absorption Chillers and Heat Pumps.
,
CRC Press
,
New York
.
35.
Tozer
,
R.
, and
James
,
R.
,
1995
, “
Absorption Chillers Applied to CHP Systems
,”
Build. Serv. Eng. Res. Technol.
,
16
(
4
), pp.
179
188
. 10.1177/014362449501600
36.
Cath
,
T. Y.
,
Adams
,
V. D.
, and
Childress
,
A. E.
,
2003
, “
Experimental Study of Desalination Using Direct Contact Membrane Distillation: A New Approach to Flux Enhancement
,”
Membr. Sci.
,
228
(
1
), pp.
5
16
. 10.1016/j.memsci.2003.09.006
37.
Kim
,
Y. D.
,
Thu
,
K.
,
Ghaffour
,
N.
, and
Ng
,
K. C.
,
2013
, “
Performance Investigation of a Solar-Assisted Direct Contact Membrane
,”
J. Membr. Sci.
,
427
, pp.
345
364
. 10.1016/j.memsci.2012.10.008
38.
Cheng
,
L. H.
,
Wu
,
P. C.
, and
Chen
,
J.
,
2008
, “
Modeling and Optimization of Hollow Fiber DCMD Module for Desalination
,”
J. Membr. Sci.
,
318
(
1–2
), pp.
154
166
. 10.1016/j.memsci.2008.02.065
39.
Yang
,
X.
,
Wang
,
R.
,
Shia
,
L.
,
Fane
,
A. G.
, and
Debowski
,
M.
,
2011
, “
Performance Improvement of PVDF Hollow Fiber-Based Membrane Distillation Process
,”
J. Membr. Sci.
,
369
(
1–2
), pp.
437
447
. 10.1016/j.memsci.2010.12.020
40.
Morris
,
M.
, and
Waldheim
,
L.
,
1998
, “
Energy Recovery From Solid Waste Fuels Using Advanced Gasification Technology
,”
Waste Manage.
,
18
(
6–8
), pp.
557
564
. 10.1016/S0956-053X(98)00146-9
41.
Babicz
,
J.
,
2015
,
Wärtsilä Encyclopedia of Ship Technology
, 2nd ed.,
Wärsilä Corporation
,
Helsinki
.
42.
Rokni
,
M.
,
2016
, “
Performance Comparison on Repowering of a Steam Power Plant with Gas Turbine and Solid Oxide Fuel Cells
,”
Energies
,
9
(
6
), p.
399
. 10.3390/en9060399
You do not currently have access to this content.