Abstract

Rechargeable aluminum ion batteries (AIBs) have attracted much attention because of their high charge density, low cost, and low flammability. Transition metal sulfides are a class of cathode materials that have been extensively studied. In this report, Bi2S3 nanorods and Bi2S3/MoS2 nanorods were synthesized by the hydrothermal method as new type of cathode materials for rechargeable AIBs. The diameter of Bi2S3/MoS2 nanorods is 20–100 nm. The Bi2S3 nanorods display high initial charge and discharge capacities of 343.3 and 251 mA h/g with a current density of 1 A/g. The static cycling for the Bi2S3/MoS2 nanorods electrode at 1 A/g denotes high stability with a specific capacity of 132.9 mA h/g after 100 cycles. The charging voltage platform of Bi2S3 nanorods and Bi2S3/MoS2 nanorods is at 1.1–1.4 V, and the discharge voltage platform is at around 0.8 V. The well-defined heterojunction maintains the stability of the Bi2S3 structure during long-term cycling, which is desirable for aluminum ion batteries. This strategy reveals new insights for designing cathode materials of high-performance AIBs.

References

References
1.
Wakihara
,
M.
,
2001
, “
Recent Developments in Lithium ion Batteries
,”
Mater. Sci. Eng. R
,
33
(
4
), pp.
109
134
. 10.1016/S0927-796X(01)00030-4
2.
Li
,
P.
,
Yang
,
Y.
,
Gong
,
S.
,
Lv
,
F.
,
Wang
,
W.
,
Li
,
Y.
, and
Guo
,
S.
,
2019
, “
Co-doped 1T-MoS2 Nanosheets Embedded in N, S-Doped Carbon Nanobowls for High-Rate and Ultra-Stable Sodium-ion Batteries
,”
Nano Res.
,
12
(
9
), pp.
2218
2223
. 10.1007/s12274-018-2250-2
3.
Senthilkumar
,
M.
,
Jagadish
,
K.
,
Satyavani
,
T. V. S. L.
, and
Srinivas Kumar
,
A.
,
2020
, “
Electrochemical Studies on Na0. 44MnO2 as Cathode Material for Na-Ion Battery Synthesized Through Sol–Gel Auto Combustion Process
,”
J. Electrochem. Energy
,
17
(
1
), p.
011007
. 10.1115/1.4044155
4.
Zhao
,
C.
,
Lu
,
Y.
,
Chen
,
L.
, and
Hu
,
Y. S.
,
2019
, “
Ni-Based Cathode Materials for Na-ion Batteries
,”
Nano Res.
,
12
(
9
), pp.
2018
2030
. 10.1007/s12274-019-2451-3
5.
Saha
,
P.
,
Jampani
,
P. H.
,
Datta
,
M. K.
,
Hong
,
D.
,
Gattu
,
B.
,
Patel
,
P.
, and
Kumta
,
P. N.
,
2017
, “
A Rapid Solid-State Synthesis of Electrochemically Active Chevrel Phases (Mo6T8, T=S, Se) for Rechargeable Magnesium Batteries
,”
Nano Res.
,
10
(
12
), pp.
4415
4435
. 10.1007/s12274-017-1695-z
6.
Lin
,
M. C.
,
Gong
,
M.
,
Lu
,
B.
,
Wu
,
Y.
,
Wang
,
D. Y.
,
Guan
,
M.
, and
Dai
,
H.
,
2015
, “
An Ultrafast Rechargeable Aluminium-ion Battery
,”
Nature
,
520
(
7547
), pp.
325
328
.
7.
Ren
,
H.
,
Zhao
,
J.
,
Yang
,
L.
,
Liang
,
Q.
,
Madhavi
,
S.
, and
Yan
,
Q.
,
2019
, “
Inverse Opal Manganese Dioxide Constructed by Few-Layered Ultrathin Nanosheets as High-Performance Cathodes for Aqueous Zinc-ion Batteries
,”
Nano Res.
,
12
(
6
), pp.
1347
1353
. 10.1007/s12274-019-2303-1
8.
Li
,
Q.
, and
Bjerrum
,
N. J.
,
2002
, “
Aluminum as Anode for Energy Storage and Conversion: A Review
,”
J. Power Sources
,
110
(
1
), pp.
1
10
. 10.1016/S0378-7753(01)01014-X
9.
Zhang
,
Y.
,
Liu
,
S.
,
Ji
,
Y.
,
Ma
,
J.
, and
Yu
,
H.
,
2018
, “
Emerging Nonaqueous Aluminum-Ion Batteries: Challenges, Status, and Perspectives
,”
Adv. Mater.
,
30
(
38
), p.
1706310
. 10.1002/adma.201706310
10.
Tian
,
M.
,
Chen
,
X.
,
Sun
,
S.
,
Yang
,
D.
, and
Wu
,
P.
,
2019
, “
A Bioinspired High-Modulus Mineral Hydrogel Binder for Improving the Cycling Stability of Microsized Silicon Particle-Based Lithium-Ion Battery
,”
Nano Res.
,
12
(
5
), pp.
1121
1127
. 10.1007/s12274-019-2359-y
11.
Christensen
,
C. K.
,
Mamakhel
,
A.
,
Balakrishna
,
A. R.
,
Iversen
,
B. B.
,
Chiang
,
Y. M.
, and
Ravnsbæk
,
D.
,
2019
, “
Order-Disorder Transition in Nano-Rutile TiO2 Anodes: A High Capacity low-Volume Change Li-ion Battery Material
,”
Nanoscale
,
11
(
25
), pp.
12347
12357
. 10.1039/C9NR01228A
12.
Meng
,
X.
, and
Deng
,
D.
,
2017
, “
Diaphragm-Regulated Growth of Nanosheet Arrays of α-Phase Ni–Co Layered Double Hydroxides on Arbitrary Substrates for Wettability Control and Rechargeable Alkaline Batteries
,”
ChemNanoMat
,
3
(
7
), pp.
479
484
. 10.1002/cnma.201700035
13.
Zhang
,
Q.
,
Wang
,
L.
,
Wang
,
J.
,
Xing
,
C.
,
Ge
,
J.
,
Fan
,
L.
, and
Zhang
,
H.
,
2018
, “
Low-Temperature Synthesis of Edge-Rich Graphene Paper for High-Performance Aluminum Batteries
,”
Energy Storage Mater.
,
15
, pp.
361
367
. 10.1016/j.ensm.2018.06.021
14.
Smajic
,
J.
,
Alazmi
,
A.
,
Batra
,
N.
,
Palanisamy
,
T.
,
Anjum
,
D. H.
, and
Costa
,
P. M.
,
2018
, “
Mesoporous Reduced Graphene Oxide as a High Capacity Cathode for Aluminum Batteries
,”
Small
,
14
(
51
), p.
1803584
. 10.1002/smll.201803584
15.
Li
,
C.
,
Dong
,
S.
,
Tang
,
R.
,
Ge
,
X.
,
Zhang
,
Z.
,
Wang
,
C.
, and
Yin
,
L.
,
2018
, “
Heteroatomic Interface Engineering in MOF-Derived Carbon Heterostructures With Built-in Electric-Field Effects for High Performance Al-ion Batteries
,”
Energy Environ. Sci.
,
11
(
11
), pp.
3201
3211
. 10.1039/C8EE01046C
16.
Huang
,
H.
,
Zhou
,
F.
,
Shi
,
X.
,
Qin
,
J.
,
Zhang
,
Z.
,
Bao
,
X.
, and
Wu
,
Z. S.
,
2019
, “
Graphene Aerogel Derived Compact Films for Ultrafast and High-Capacity Aluminum ion Batteries
,”
Energy Storage Mater.
,
23
, pp.
664
669
. 10.1016/j.ensm.2019.03.001
17.
Uemura
,
Y.
,
Chen
,
C. Y.
,
Hashimoto
,
Y.
,
Tsuda
,
T.
,
Matsumoto
,
H.
, and
Kuwabata
,
S.
,
2018
, “
Graphene Nanoplatelet Composite Cathode for a Chloroaluminate Ionic Liquid-Based Aluminum Secondary Battery
,”
ACS Appl. Energy Mater.
,
1
(
5
), pp.
2269
2274
. 10.1021/acsaem.8b00341
18.
Yu
,
X.
,
Wang
,
B.
,
Gong
,
D.
,
Xu
,
Z.
, and
Lu
,
B.
,
2017
, “
Graphene Nanoribbons on Highly Porous 3D Graphene for High-Capacity and Ultrastable Al-ion Batteries
,”
Adv. Mater.
,
29
(
4
), p.
1604118
. 10.1002/adma.201604118
19.
Qiao
,
J.
,
Zhou
,
H.
,
Liu
,
Z.
,
Wen
,
H.
, and
Yang
,
J.
,
2019
, “
Defect-Free Soft Carbon as Cathode Material for Al-Ion Batteries
,”
Ionics
,
25
(
3
), pp.
1235
1242
. 10.1007/s11581-019-02896-8
20.
Wei
,
J.
,
Chen
,
W.
,
Chen
,
D.
, and
Yang
,
K.
,
2018
, “
An Amorphous Carbon-Graphite Composite Cathode for Long Cycle Life Rechargeable Aluminum ion Batteries
,”
J. Mater. Sci. Technol.
,
34
(
6
), pp.
983
989
. 10.1016/j.jmst.2017.06.012
21.
Liu
,
Z.
,
Wang
,
J.
,
Ding
,
H.
,
Chen
,
S.
,
Yu
,
X.
, and
Lu
,
B.
,
2018
, “
Carbon Nanoscrolls for Aluminum Battery
,”
ACS Nano
,
12
(
8
), pp.
8456
8466
. 10.1021/acsnano.8b03961
22.
Dong
,
X.
,
Xu
,
H.
,
Chen
,
H.
,
Wang
,
L.
,
Wang
,
J.
,
Fang
,
W.
, and
Gao
,
C.
,
2019
, “
Commercial Expanded Graphite as High-Performance Cathode for Low-Cost Aluminum-Ion Battery
,”
Carbon
,
148
, pp.
134
140
. 10.1016/j.carbon.2019.03.080
23.
Liu
,
J.
,
Li
,
Z.
,
Huo
,
X.
, and
Li
,
J.
,
2019
, “
Nanosphere-Rod-Like Co3O4 as High Performance Cathode Material for Aluminium ion Batteries
,”
J. Power Sources
,
422
, pp.
49
56
. 10.1016/j.jpowsour.2019.03.029
24.
Zhang
,
X.
,
Zhang
,
G.
,
Wang
,
S.
,
Li
,
S.
, and
Jiao
,
S.
,
2018
, “
Porous CuO Microsphere Architectures as High-Performance Cathode Materials for Aluminum-ion Batteries
,”
J. Mater. Chem. A
,
6
(
7
), pp.
3084
3090
. 10.1039/C7TA10632G
25.
Ojeda
,
M.
,
Chen
,
B.
,
Leung
,
D. Y.
,
Xuan
,
J.
, and
Wang
,
H.
, “
A Hydrogel Template Synthesis of TiO2 Nanoparticles for Aluminium-ion Batteries
,”
Energy Procedia
,
105
, pp.
3997
4002
. 10.1016/j.egypro.2017.03.836
26.
Lu
,
H.
,
Wan
,
Y.
,
Wang
,
T.
,
Jin
,
R.
,
Ding
,
P.
,
Wang
,
R.
, and
Zhou
,
D.
,
2019
, “
A High Performance SnO2/C Nanocomposite Cathode for Aluminum-ion Batteries
,”
J. Mater. Chem. A
,
7
(
12
), pp.
7213
7220
. 10.1039/C8TA11132D
27.
Li
,
H.
,
Yang
,
H.
,
Sun
,
Z.
,
Shi
,
Y.
,
Cheng
,
H. M.
, and
Li
,
F.
,
2019
, “
A Highly Reversible Co3S4 Microsphere Cathode Material for Aluminum-ion Batteries
,”
Nano Energy
,
56
, pp.
100
108
. 10.1016/j.nanoen.2018.11.045
28.
Hu
,
Y.
,
Ye
,
D.
,
Luo
,
B.
,
Hu
,
H.
,
Zhu
,
X.
,
Wang
,
S.
, and
Wang
,
L.
,
2018
, “
A Binder-Free and Free-Standing Cobalt Sulfide@Carbon Nanotube Cathode Material for Aluminum-Ion Batteries
,”
Adv. Mater.
,
30
(
2
), p.
1703824
. 10.1002/adma.201703824
29.
Wang
,
S.
,
Jiao
,
S.
,
Wang
,
J.
,
Chen
,
H. S.
,
Tian
,
D.
,
Lei
,
H.
, and
Fang
,
D. N.
,
2016
, “
High-Performance Aluminum-Ion Battery with CuS@C Microsphere Composite Cathode
,”
ACS Nano
,
11
(
1
), pp.
469
477
. 10.1021/acsnano.6b06446
30.
Mori
,
T.
,
Orikasa
,
Y.
,
Nakanishi
,
K.
,
Kezheng
,
C.
,
Hattori
,
M.
,
Ohta
,
T.
, and
Uchimoto
,
Y.
,
2016
, “
Discharge/Charge Reaction Mechanisms of FeS2 Cathode Material for Aluminum Rechargeable Batteries at 55 °C
,”
J. Power Sources
,
313
, pp.
9
14
. 10.1016/j.jpowsour.2016.02.062
31.
Yang
,
W.
,
Lu
,
H.
,
Cao
,
Y.
,
Xu
,
B.
,
Deng
,
Y.
, and
Cai
,
W.
,
2019
, “
Flexible Free-Standing MoS2/Carbon Nanofibers Composite Cathode for Rechargeable Aluminum-Ion Batteries
,”
ACS Sustainable Chem. Eng.
,
7
(
5
), pp.
4861
4867
. 10.1021/acssuschemeng.8b05292
32.
Geng
,
L.
,
Lv
,
G.
,
Xing
,
X.
, and
Guo
,
J.
, “
Reversible Electrochemical Intercalation of Aluminum in Mo6S8
,”
Chem. Mater.
,
27
(
14
), pp.
4926
4929
. 10.1021/acs.chemmater.5b01918
33.
Wang
,
S.
,
Yu
,
Z.
,
Tu
,
J.
,
Wang
,
J.
,
Tian
,
D.
,
Liu
,
Y.
, and
Jiao
,
S.
,
2016
, “
A Novel Aluminum-Ion Battery: Al/AlCl3-[EMIm]Cl/Ni3S2@Graphene
,”
Adv. Energy Mater.
,
6
(
13
), p.
1600137
. 10.1002/aenm.201600137
34.
Li
,
S.
,
Tu
,
J.
,
Zhang
,
G. H.
,
Wang
,
M.
, and
Jiao
,
S.
,
2018
, “
NiCo2S4 Nanosheet With Hexagonal Architectures as an Advanced Cathode for Al-Ion Batteries
,”
J. Electrochem. Soc.
,
165
(
14
), pp.
A3504
A3509
. 10.1149/2.1201814jes
35.
Hu
,
Y.
,
Luo
,
B.
,
Ye
,
D.
,
Zhu
,
X.
,
Lyu
,
M.
, and
Wang
,
L.
,
2017
, “
An Innovative Freeze-Dried Reduced Graphene Oxide Supported SnS2 Cathode Active Material for Aluminum-Ion Batteries
,”
Adv. Mater.
,
29
(
48
), p.
1606132
. 10.1002/adma.201606132
36.
Geng
,
L.
,
Scheifers
,
J. P.
,
Fu
,
C.
,
Zhang
,
J.
,
Fokwa
,
B. P.
, and
Guo
,
J.
,
2017
, “
Titanium Sulfides as Intercalation-Type Cathode Materials for Rechargeable Aluminum Batteries
,”
ACS Appl. Mater. Inter.
,
9
(
25
), pp.
21251
21257
. 10.1021/acsami.7b04161
37.
Wu
,
L.
,
Sun
,
R.
,
Xiong
,
F.
,
Pei
,
C.
,
Han
,
K.
,
Peng
,
C.
, and
Mai
,
L.
,
2018
, “
A Rechargeable Aluminum-Ion Battery Based on a VS2 Nanosheet Cathode
,”
Phys. Chem. Chem. Phys.
,
20
(
35
), pp.
22563
22568
. 10.1039/C8CP04772C
38.
Jiang
,
J.
,
Li
,
H.
,
Fu
,
T.
,
Hwang
,
B. J.
,
Li
,
X.
, and
Zhao
,
J.
,
2018
, “
One-Dimensional Cu2–xSe Nanorods as the Cathode Material for High-Performance Aluminum-Ion Battery
,”
ACS Appl. Mater. Inter.
,
10
(
21
), pp.
17942
17949
. 10.1021/acsami.8b03259
39.
Xing
,
W.
,
Du
,
D.
,
Cai
,
T.
,
Li
,
X.
,
Zhou
,
J.
,
Chai
,
Y.
, and
Yan
,
Z.
,
2018
, “
Carbon-Encapsulated CoSe Nanoparticles Derived From Metal-Organic Frameworks as Advanced Cathode Material for Al-ion Battery
,”
J. Power Sources
,
401
, pp.
6
12
. 10.1016/j.jpowsour.2018.08.079
40.
Guo
,
Y.
,
Jin
,
H.
,
Qi
,
Z.
,
Hu
,
Z.
,
Ji
,
H.
, and
Wan
,
L. J.
,
2019
, “
Carbonized-MOF as a Sulfur Host for Aluminum–Sulfur Batteries with Enhanced Capacity and Cycling Life
,”
Adv. Funct. Mater.
,
29
(
7
), p.
1807676
. 10.1002/adfm.201807676
41.
Zhang
,
S.
,
Tan
,
X.
,
Meng
,
Z.
,
Tian
,
H.
,
Xu
,
F.
, and
Han
,
W. Q.
,
2018
, “
Naturally Abundant High-Performance Rechargeable Aluminum/Iodine Batteries Based on Conversion Reaction Chemistry
,”
J. Mater. Chem. A
,
6
(
21
), pp.
9984
9996
. 10.1039/C8TA00675J
42.
Zhang
,
X.
,
Jiao
,
S.
,
Tu
,
J.
,
Song
,
W. L.
,
Xiao
,
X.
,
Li
,
S.
, and
Fang
,
D.
,
2019
, “
Rechargeable Ultrahigh-Capacity Tellurium–Aluminum Batteries
,”
Energy Environ. Sci.
12
, pp.
1918
1927
. 10.1039/c9ee00862d
43.
Li
,
Z.
,
Niu
,
B.
,
Liu
,
J.
,
Li
,
J.
, and
Kang
,
F.
,
2018
, “
Rechargeable Aluminum-ion Battery Based on MoS2 Microsphere Cathode
,”
ACS Appl. Mater. Inter.
,
10
(
11
), pp.
9451
9459
. 10.1021/acsami.8b00100
44.
Wang
,
H.
,
Bi
,
X.
,
Bai
,
Y.
,
Wu
,
C.
,
Gu
,
S.
,
Chen
,
S.
, and
Lu
,
J.
,
2017
, “
Open-Structured V2O5·nH2O Nanoflakes as Highly Reversible Cathode Material for Monovalent and Multivalent Intercalation Batteries
,”
Adv. Energy Mater.
,
7
(
14
), p.
1602720
. 10.1002/aenm.201602720
45.
Li
,
C.
,
Li
,
Z.
,
Li
,
Q.
,
Zhang
,
Z.
,
Dong
,
S.
, and
Yin
,
L.
,
2016
, “
MOFS Derived Hierarchically Porous TiO2 as Effective Chemical and Physical Immobilizer for Sulfur Species as Cathodes for High-Performance Lithium-Sulfur Batteries
,”
Electrochim. Acta
,
215
, pp.
689
698
. 10.1016/j.electacta.2016.08.044
46.
Cai
,
J.
, and
Ye
,
Y. Y.
,
1996
, “
Simple Analytical Embedded-Atom-Potential Model Including a Long-Range Force for fcc Metals and Their Alloys
,”
Phys. Rev. B
,
54
(
12
), pp.
8398
8410
. 10.1103/PhysRevB.54.8398
You do not currently have access to this content.