Abstract

Spinel LiNi0.5Mn1.5O4 (LNMO) has become one of the most practical power lithium-ion battery cathode materials due to its advantages of three-dimensional Li+ diffusion channel, higher potential window (3.5–5V), high-energy density (∼660 Wh/kg), and high-power density. In this manuscript, a hollow spherical LNMO material with large size and high crystallinity is prepared by a modified coprecipitation method using ethyl alcohol as a peptizator. Subsequently, the prepared LNMO material is further modified by an Al2O3 coating to improve its cycle stability. Results show that the initial discharge-specific capacity of LNMO material with 1 wt% Al2O3 coating is 133.7 mAh g−1 at 0.2 C rate, and the capacity retention rate is 97.7% after 100 cycles. The effective increase in the cycle life of the battery can be attributed to the uniform and dense Al2O3 coating on the surface of the material.

References

References
1.
Nukuda
,
T.
,
Inamasu
,
T.
,
Fujii
,
A.
,
Endo
,
D.
,
Nakagawa
,
H.
,
Kozono
,
S.
,
Iguchi
,
T.
,
Kuratomi
,
J.
,
Kohno
,
K.
,
Izuchi
,
S.
, and
Oshitani
,
M.
,
2005
, “
Development of a Lithium Ion Battery Using a New Cathode Material
,”
J. Power Sources
,
146
(
1–2
), pp.
611
616
. 10.1016/j.jpowsour.2005.03.074
2.
Manthiram
,
A.
,
Chemelewski
,
K.
, and
Lee
,
E.-S.
,
2014
, “
A Perspective on the High-Voltage LiMn1.5Ni0.5O4 Spinel Cathode for Lithium-Ion Batteries
,”
Energy Environ. Sci.
,
7
(
4
), pp.
1339
1350
. 10.1039/c3ee42981d
3.
Scrosati
,
B.
, and
Garche
,
J.
,
2010
, “
Lithium Batteries: Status, Prospects and Future
,”
J. Power Sources
,
195
(
9
), pp.
2419
2430
. 10.1016/j.jpowsour.2009.11.048
4.
Xu
,
J. T.
,
Dou
,
S. X.
,
Liu
,
H. K.
, and
Dai
,
L. M.
,
2013
, “
Cathode Materials for Next Generation Lithium Ion Batteries
,”
Nano Energy
,
2
(
4
), pp.
439
442
. 10.1016/j.nanoen.2013.05.013
5.
Xiao
,
Y.
,
Fan
,
J.
,
Zhang
,
X.
,
Zhang
,
D.
, and
Chang
,
C.
,
2019
, “
Li2Ni0.5Mn1.5O4, Spinel Type Cathode Material With High Reversible Capacity
,”
Electrochim. Acta
,
311
, pp.
170
177
. 10.1016/j.electacta.2019.04.162
6.
Gong
,
Y.
,
Chen
,
Y.
,
Zhang
,
Q.
,
Meng
,
F.
,
Shi
,
J.-A.
,
Liu
,
X.
,
Liu
,
X.
,
Zhang
,
J.
,
Wang
,
H.
,
Wang
,
J.
,
Yu
,
Q.
,
Zhang
,
Z.
,
Xu
,
Q.
,
Xiao
,
R.
,
Hu
,
Y.-S.
,
Gu
,
L.
,
Li
,
H.
,
Huang
,
X.
, and
Chen
L.
,
2018
, “
Three-Dimensional Atomic-Scale Observation of Structural Evolution of Cathode Material in a Working All-Solid-State Battery
,”
Nat. Commun.
,
9
(
1
), p.
3341
. 10.1038/s41467-018-05833-x
7.
Liu
,
Y.
,
Li
,
J.
,
Zeng
,
M.
,
Huang
,
Y.
,
Xu
,
X.
,
Yan
,
M.
,
Guo
,
J.
,
Deng
,
J.
, and
Yang
,
J.
,
2018
, “
Octahedral Nano-Particles Constructed LiNi0.5Mn1.5O4 Microspheres as High-Voltage Cathode Materials for Long-Life Lithium-Ion Batteries
,”
Ceram. Int.
,
44
(
16
), pp.
20043
20048
. 10.1016/j.ceramint.2018.07.278
8.
Choi
,
D. I.
,
Lee
,
H.
,
Lee
,
D. J.
,
Nam
,
K.-W.
,
Kim
,
J.-S.
,
Huggins
,
R. A.
,
Park
,
J.-K.
, and
Choi
,
J. W.
,
2013
, “
Cotton-Templated Hierarchical Porous Structures for High Power Lithium Rechargeable Batteries
,”
J. Mater. Chem. A
,
1
(
17
), pp.
5320
5325
. 10.1039/c3ta00192j
9.
Ma
,
G.
,
Li
,
S.
,
Zhang
,
W.
,
Yang
,
Z.
,
Liu
,
S.
,
Fan
,
X.
,
Chen
,
F.
,
Tian
,
Y.
,
Zhang
,
W.
,
Yang
,
S.
, and
Li
,
M.
,
2016
, “
A General and Mild Approach to Controllable Preparation of Manganese-Based Micro-and Nanostructured Bars for High Performance Lithium-Ion Batteries
,”
Angew. Chem., Int. Ed.
,
55
(
11
), pp.
3667
3671
. 10.1002/anie.201511196
10.
Luo
,
H.
,
Nie
,
P.
,
Shen
,
L.
,
Li
,
H.
,
Deng
,
H.
,
Zhu
,
Y.
, and
Zhang
,
X.
,
2015
, “
Synthesis of LiNi0.5Mn1.5O4 Hollow Microspheres and Their Lithium-Storage Properties
,”
ChemElectroChem
,
2
(
1
), pp.
127
133
. 10.1002/celc.201402256
11.
Guo
,
J.
,
Li
,
Y.
,
Chen
,
Y.
,
Deng
,
S.
,
Zhu
,
J.
,
Wang
,
S.
,
Zhang
,
J.
,
Chang
,
S.
,
Zhang
,
D.
, and
Xi
,
X.
,
2019
, “
Stable Interface Co3O4-Coated LiNi0.5Mn1.5O4 for Lithium-Ion Batteries
,”
J. Alloys Compd.
,
811
, p.
152031
. 10.1016/j.jallcom.2019.152031
12.
Kim
,
J. H.
,
Myung
,
S. T.
,
Yoon
,
C. S.
,
Kang
,
S. G.
, and
Sun
,
Y. K.
,
2004
, “
Comparative Study of LiNi0.5Mn1.5O4−δ and LiNi0.5Mn1.5O4 Cathodes Having Two Crystallographic Structures: Fd3m and P4332
,”
Chem. Mater.
,
16
(
5
), pp.
906
914
. 10.1021/cm035050s
13.
Lin
,
C.-Y.
,
Duh
,
J.-G.
,
Hsu
,
C.-H.
, and
Chen
,
J.-M.
,
2010
, “
LiNi0.5Mn1.5O4 Cathode Material by Low-Temperature Solid-State Method With Excellent Cycleability in Lithium Ion Battery
,”
Mater. Lett.
,
64
(
21
), pp.
2328
2330
. 10.1016/j.matlet.2010.07.017
14.
Liu
,
B.-S.
,
Wang
,
Z.-B.
,
Zhang
,
Y.
,
Yu
,
F.-D.
,
Xue
,
Y.
,
Ke
,
K.
, and
Li
,
F.-F.
,
2015
, “
Preparation of Submicrocrystal LiMn2O4 Used Mn3O4 as Precursor and Its Electrochemical Performance for Lithium Ion Battery
,”
J. Alloys Compd.
,
622
, pp.
902
907
. 10.1016/j.jallcom.2014.11.004
15.
Ohzuku
,
T.
,
Ariyoshi
,
K.
,
Takeda
,
S.
, and
Sakai
,
Y.
2001
, “
Synthesis and Characterization of 5 V Insertion Material of Li[FeyMn2−y]O4 for Lithium-Ion Batteries
,”
Electrochim. Acta
,
46
(
15
), pp.
2327
2336
. 10.1016/S0013-4686(00)00725-8
16.
Wang
,
J.
,
Lin
,
W.
,
Wu
,
B.
, and
Zhao
,
J.
,
2014
, “
Syntheses and Electrochemical Properties of the Na-Doped LiNi0.5Mn1.5O4 Cathode Materials for Lithium-Ion Batteries
,”
Electrochim. Acta
,
145
, pp.
245
253
. 10.1016/j.electacta.2014.07.140
17.
Zhu
,
Z.
,
Qi
,
L.
,
Li
,
W.
, and
Liao
,
X.-Y.
,
2014
, “
Preparation and Electrochemical Performance of 5 V LiNi0.5Mn1.5O4 Cathode Material by the Composite Co-Precipitation Method for High Energy/High Power Lithium Ion Secondary Batteries
,”
Acta Physico-Chimica Sinica
,
30
(
4
), pp.
669
676
10.3866/PKU.WHXB201402102.
18.
Choi
,
S. H.
,
Hong
,
Y. J.
, and
Kang
,
Y. C.
,
2013
, “
Yolk-Shelled Cathode Materials With Extremely High Electrochemical Performances Prepared by Spray Pyrolysis
,”
Nanoscale
,
5
(
17
), pp.
7867
7871
. 10.1039/c3nr01675g
19.
Kraytsberg
,
A.
, and
Ein-Eli
,
Y.
,
2012
, “
Higher, Stronger, Better. A Review of 5 Volt Cathode Materials for Advanced Lithium-Ion Batteries
,”
Adv. Energy Mater.
,
2
(
8
), pp.
922
939
. 10.1002/aenm.201200068
20.
Han
,
Z.
,
Jia
,
X.
,
Zhan
,
H.
, and
Zhou
,
Y.
,
2013
, “
LiMn2O4/LiNi0.5Mn1.5O4 Composite With Improved Electrochemical Property
,”
Electrochim. Acta
,
114
, pp.
772
778
. 10.1016/j.electacta.2013.10.078
21.
Ragavendran
,
K.
,
Chou
,
H. L.
,
Lu
,
L.
,
Lai
,
M. O.
,
Hwang
,
B. J.
,
Kumar
,
R. R.
,
Gopukumar
,
S.
,
Emmanuel
,
B.
,
Vasudevan
,
D.
, and
Sherwood
,
D.
,
2011
, “
Crystal Habits of LiMn2O4 and Their Influence on the Electrochemical Performance
,”
Mater. Sci. Eng. B
,
176
(
16
), pp.
1257
1263
. 10.1016/j.mseb.2011.07.005
22.
Wan
,
L.
,
Deng
,
Y.
,
Yang
,
C.
,
Xu
,
H.
,
Qin
,
X.
, and
Chen
,
G.
,
2015
, “
Ni/Mn Ratio and Morphology-Dependent Crystallographic Facet Structure and Electrochemical Properties of the High-Voltage Spinel LiNi0.5Mn1.5O4 Cathode Material
,”
RSC Adv.
,
5
(
33
), pp.
25988
25997
. 10.1039/c5ra03602j
23.
Chang
,
Q.
,
Wei
,
A.
,
Li
,
W.
,
Bai
,
X.
,
Zhang
,
L.
,
He
,
R.
, and
Liu
,
Z.
,
2018
, “
Structural and Electrochemical Characteristics of Al2O3-Modified LiNi0.5Mn1.5O4 Cathode Materials for Lithium-Ion Batteries
,”
Ceram. Int.
,
45
(
4
), pp.
5100
5110
10.1016/j.ceramint.2018.11.213
24.
Ho
,
C.
,
Raistrick
,
I. D.
, and
Huggins
,
R. A.
,
1980
, “
Application of A-C Techniques to the Study of Lithium Diffusion in Tungsten Trioxide Thin Films
,”
J. Electrochem. Soc.
,
127
(
2
), pp.
343
350
. 10.1149/1.2129668
25.
Kim
,
J. W.
,
Kim
,
D. H.
,
Oh
,
D. Y.
,
Lee
,
H.
,
Kim
,
J. H.
,
Lee
,
J. H.
, and
Jung
,
Y. S.
,
2015
, “
Surface Chemistry of LiNi0.5Mn1.5O4 Particles Coated by Al2O3 Using Atomic Layer Deposition for Lithium-Ion Batteries
,”
J. Power Sources
,
274
, pp.
1254
1262
. 10.1016/j.jpowsour.2014.10.207
26.
Yang
,
G.
,
Shi
,
J.
,
Shen
,
C.
,
Wang
,
S.
,
Xia
,
L.
,
Hu
,
H.
,
Luo
,
H.
,
Xia
,
Y.
, and
Liu
,
Z.
,
2017
, “
Improving the Cyclability Performance of Lithium-Ion Batteries by Introducing Lithium Difluorophosphate (LiPO2F2) Additive
,”
RSC Adv.
,
7
(
42
), pp.
26052
26059
. 10.1039/C7RA03926C
27.
Xiao
,
J.
,
Chen
,
X.
,
Sushko
,
P. V.
,
Sushko
,
M. L.
,
Kovarik
,
L.
,
Feng
,
J.
,
Deng
,
Z.
,
Zheng
,
J.
,
Graff
,
G. L.
,
Nie
,
Z.
,
Choi
,
D.
,
Liu
,
J.
,
Zhang
,
J.-G.
, and
Whittingham
,
M. S.
,
2012
, “
High-Performance LiNi0.5Mn1.5O4 Spinel Controlled by Mn3+Concentration and Site Disorder
,”
Adv. Mater.
,
24
(
16
), pp.
2109
2116
. 10.1002/adma.201104767
28.
Liu
,
M.-H.
,
Huang
,
H.-T.
,
Lin
,
C.-M.
,
Chen
,
J.-M.
, and
Liao
,
S.-C.
,
2014
, “
Mg Gradient-Doped LiNi0.5Mn1.5O4 as the Cathode Material for Lithium-Ion Battery
,”
Electrochim. Acta
,
120
, pp.
133
139
. 10.1016/j.electacta.2013.12.065
29.
Lu
,
X.
,
Liu
,
C.
,
Zhu
,
W.
,
Lu
,
Z.
,
Li
,
W.
,
Yang
,
Y.
, and
Yang
,
G.
,
2019
, “
Synthesis of Micron-Sized LiNi0.5Mn1.5O4 Single Crystals Through In Situ Microemulsion/Coprecipitation and Characterization of Their Electrochemical Capabilities
,”
Powder Technol.
,
343
, pp.
445
453
. 10.1016/j.powtec.2018.11.038
30.
Yoon
,
T.
,
Park
,
S.
,
Mun
,
J.
,
Ryu
,
J. H.
,
Choi
,
W.
,
Kang
,
Y.-S.
,
Park
,
J.-H.
, and
Oh
,
S. M.
,
2012
, “
Failure Mechanisms of LiNi0.5Mn1.5O4 Electrode at Elevated Temperature
,”
J. Power Sources
,
215
, pp.
312
316
. 10.1016/j.jpowsour.2012.04.103
You do not currently have access to this content.