Abstract

The anode and cathode pieces are vital components of lithium-ion batteries. The coating surface density of active material is a significant parameter involved during the fabrication of electrodes and has considerable impact on battery performance. In this paper, anode and cathode pieces are prepared with different surface densities within the allowable range. The anode and cathode pieces are first graded respectively and then matched up according to different surface density ranges. Afterward, the electrodes are assembled with commercial polypropylene separator in 18,650 cell case and infused with electrolyte. The cathode is constituted with a mixture of nickel cobalt manganese (NCM) ternary material and lithium manganese oxide coated on aluminum foil, while the anode is composed of graphite coated on copper foil. The electrochemical performance and safety properties were tested to investigate the influence of the coating surface density of electrodes and optimize the electrochemical performance by regulating the matching surface density of electrodes. The results indicate that larger surface density of both cathode and anode can provide better battery consistency, while smaller surface density can contribute to better specific capacity and smaller capacity loss after cycling. Modest cost and superior properties can be achieved for lithium-ion batteries by reasonably matching the surface density of anodes and cathodes pieces.

References

References
1.
Kasnatscheew
,
J.
,
Wagner
,
R.
,
Winter
,
M.
, and
Cekic-Laskovic
,
I.
,
2018
, “
Interfaces and Materials in Lithium Ion Batteries: Challenges for Theoretical Electrochemistry
,”
Top. Curr. Chem.
,
376
(
3
), p.
29
. 10.1007/s41061-018-0196-1
2.
Djian
,
D.
,
Alloin
,
F.
,
Martinet
,
S.
,
Lignier
,
H.
, and
Sanchez
,
J. Y.
,
2007
, “
Lithium-Ion Batteries With High Charge Rate Capacity: Influence of the Porous Separator
,”
J. Power Sources
,
172
(
1
), pp.
416
421
. 10.1016/j.jpowsour.2007.07.018
3.
Nirmale
,
T. C.
,
Kale
,
B. B.
, and
Varma
,
A. J.
,
2017
, “
A Review on Cellulose and Lignin Based Binders and Electrodes: Small Steps Towards a Sustainable Lithium Ion Battery
,”
Int. J. Biol. Macromol.
,
103
, pp.
1032
1043
. 10.1016/j.ijbiomac.2017.05.155
4.
Li
,
B.
,
Zheng
,
J. S.
,
Zhang
,
H. Y.
,
Jin
,
L. M.
,
Yang
,
D. J.
,
Lv
,
H.
,
Shen
,
C.
,
Shellikeri
,
A.
,
Zheng
,
Y. R.
,
Gong
,
R. Q.
,
Zheng
,
J. P.
, and
Zhang
,
C. M.
,
2018
, “
Electrode Materials, Electrolytes, and Challenges in Nonaqueous Lithium-Ion Capacitors
,”
Adv. Mater.
,
30
(
17
), p.
19
. 10.1002/adma.201705670
5.
Huang
,
S.
,
Yang
,
L.
,
Gao
,
M.
,
Zhang
,
Q.
,
Xu
,
G.
,
Liu
,
X.
,
Cao
,
J.
, and
Wei
,
X.
,
2019
, “
Well-Dispersed MnO-Quantum-Dots/N-Doped Carbon Layer Anchored on Carbon Nanotube as Free-Standing Anode for High-Performance Li-Ion Batteries
,”
Electrochim. Acta
,
319
, pp.
302
311
. 10.1016/j.electacta.2019.06.155
6.
Landi
,
B. J.
,
Ganter
,
M. J.
,
Cress
,
C. D.
,
DiLeo
,
R. A.
, and
Raffaelle
,
R. P.
,
2009
, “
Carbon Nanotubes for Lithium Ion Batteries
,”
Energy Environ. Sci.
,
2
(
6
), pp.
638
654
. 10.1039/b904116h
7.
Ying
,
D.
,
Ding
,
R.
,
Huang
,
Y.
,
Shi
,
W.
,
Xu
,
Q.
,
Tan
,
C.
,
Sun
,
X.
,
Gao
,
P.
, and
Liu
,
E.
,
2019
, “
Conversion Pseudocapacitance-Contributing and Robust Hetero-Nanostructural Perovskite KCo0.54Mn0.46F3 Nanocrystals Anchored on Graphene Nanosheet Anodes for Advanced Lithium-Ion Capacitors, Batteries and Their Hybrids
,”
J. Mater. Chem. A
,
7
(
31
), pp.
18257
18266
. 10.1039/C9TA06438A
8.
Guo
,
P.
,
Song
,
H.
, and
Chen
,
X.
,
2009
, “
Electrochemical Performance of Graphene Nanosheets as Anode Material for Lithium-Ion Batteries
,”
Electrochem. Commun.
,
11
(
6
), pp.
1320
1324
. 10.1016/j.elecom.2009.04.036
9.
Lin
,
K.
,
Qin
,
X. Y.
,
Liu
,
M.
,
Xu
,
X. F.
,
Liang
,
G. M.
,
Wu
,
J. X.
,
Kong
,
F. Y.
,
Chen
,
G. H.
, and
Li
,
B. H.
,
2019
, “
Ultrafine Titanium Nitride Sheath Decorated Carbon Nanofiber Network Enabling Stable Lithium Metal Anodes
,”
Adv. Funct. Mater.
, p.
12
. 10.1002/adfm.201903229
10.
Wang
,
L.
,
Yu
,
Y.
,
Chen
,
P. C.
,
Zhang
,
D. W.
, and
Chen
,
C. H.
,
2008
, “
Electrospinning Synthesis of C/Fe3O4 Composite Nanofibers and Their Application for High Performance Lithium-Ion Batteries
,”
J. Power Sources
,
183
(
2
), pp.
717
723
. 10.1016/j.jpowsour.2008.05.079
11.
Zhou
,
X.
,
Wan
,
L. J.
, and
Guo
,
Y. G.
,
2013
, “
Binding SnO2 Nanocrystals in Nitrogen-Doped Graphene Sheets as Anode Materials for Lithium-Ion Batteries
,”
Adv. Mater.
,
25
(
15
), pp.
2152
2157
. 10.1002/adma.201300071
12.
Mo
,
R.
,
Lei
,
Z.
,
Sun
,
K.
, and
Rooney
,
D.
,
2014
, “
Facile Synthesis of Anatase TiO(2) Quantum-Dot/Graphene-Nanosheet Composites With Enhanced Electrochemical Performance for Lithium-Ion Batteries
,”
Adv. Mater.
,
26
(
13
), pp.
2084
2088
. 10.1002/adma.201304338
13.
Wang
,
J.
, and
Sun
,
X.
,
2012
, “
Understanding and Recent Development of Carbon Coating on LiFePO4cathode Materials for Lithium-Ion Batteries
,”
Energy Environ. Sci.
,
5
(
1
), pp.
5163
5185
. 10.1039/C1EE01263K
14.
Cao
,
Y.
,
Feng
,
W. J.
, and
Su
,
W. X.
,
2018
, “
The Effect of Different Carbon Sources on LiFePO4 for Electrochemical Performance
,”
Integr. Ferroelectr.
,
190
(
1
), pp.
13
19
. 10.1080/10584587.2018.1456104
15.
Tang
,
W.
,
Hou
,
Y. Y.
,
Wang
,
F. X.
,
Liu
,
L. L.
,
Wu
,
Y. P.
, and
Zhu
,
K.
,
2013
, “
LiMn2O4 Nanotube as Cathode Material of Second-Level Charge Capability for Aqueous Rechargeable Batteries
,”
Nano Lett.
,
13
(
5
), pp.
2036
2040
. 10.1021/nl400199r
16.
Kasnatscheew
,
J.
,
Evertz
,
M.
,
Streipert
,
B.
,
Wagner
,
R.
,
Klöpsch
,
R.
,
Vortmann
,
B.
,
Hahn
,
H.
,
Nowak
,
S.
,
Amereller
,
M.
,
Gentschev
,
A. C.
,
Lamp
,
P.
, and
Winter
,
M.
,
2016
, “
The Truth About the 1st Cycle Coulombic Efficiency of LiNi1/3Co1/3Mn1/3O2 (NCM) Cathodes
,”
Phys. Chem. Chem. Phys.
,
18
(
5
), pp.
3956
3965
. 10.1039/C5CP07718D
17.
Liu
,
W.
,
Li
,
X. F.
,
Xiong
,
D. B.
,
Hao
,
Y. C.
,
Li
,
J. W.
,
Kou
,
H. R.
,
Yan
,
B.
,
Li
,
D. J.
,
Lu
,
S. G.
,
Koo
,
A.
,
Adair
,
K.
, and
Sun
,
X. L.
,
2018
, “
Significantly Improving Cycling Performance of Cathodes in Lithium Ion Batteries: The Effect of Al2O3 and LiAlO2 Coatings on LiNi0.6Co0.2Mn0.2O2
,”
Nano Energy
,
44
, pp.
111
120
. 10.1016/j.nanoen.2017.11.010
18.
Wang
,
T.
,
Chen
,
Z.
,
Zhao
,
R.
,
Li
,
A.
, and
Chen
,
H.
,
2016
, “
A New High Energy Lithium Ion Batteries Consisting of 0.5Li2MnO3·0.5LiMn0.33Ni0.33Co0.33O2 and Soft Carbon Components
,”
Electrochim. Acta
,
194
, pp.
1
9
. 10.1016/j.electacta.2015.12.140
19.
Ji
,
L.
,
Lin
,
Z.
,
Alcoutlabi
,
M.
, and
Zhang
,
X.
,
2011
, “
Recent Developments in Nanostructured Anode Materials for Rechargeable Lithium-Ion Batteries
,”
Energy Environ. Sci.
,
4
(
8
), pp.
2682
2699
. 10.1039/C0EE00699H
20.
Mei
,
W.
,
Chen
,
H.
,
Sun
,
J.
, and
Wang
,
Q.
,
2019
, “
The Effect of Electrode Design Parameters on Battery Performance and Optimization of Electrode Thickness Based on the Electrochemical–Thermal Coupling Model
,”
Sustainable Energy Fuels
,
3
(
1
), pp.
148
165
. 10.1039/C8SE00503F
21.
Logothetis
,
I.
,
Fernandez-Garcia
,
R.
,
Troynikov
,
O.
,
Dabnichki
,
P.
,
Pirogova
,
E.
, and
Gil
,
I.
,
2019
, “
Embroidered Electrodes for Bioelectrical Impedance Analysis: Impact of Surface Area and Stitch Parameters
,”
Meas. Sci. Technol.
,
30
(
11
), p.
115103
. 10.1088/1361-6501/ab3201
22.
Liang
,
H.
,
Zhang
,
X.
,
Yang
,
L.
,
Wu
,
Y.
,
Chen
,
H.
,
Song
,
W.
, and
Fang
,
D.
,
2019
, “
Electrochemomechanical Coupled Behaviors of Deformation and Failure in Electrode Materials for Lithium-Ion Batteries
,”
Sci. China: Technol. Sci.
,
62
(
8
), pp.
1277
1296
. 10.1007/s11431-018-9485-6
23.
Esfahanian
,
V.
,
Kheirkhah
,
P.
,
Bahramian
,
H.
,
Ansari
,
A. B.
, and
Ahmadi
,
G.
,
2013
, “
The Effect of Electrode Parameters on Lead-Acid Battery Performance
,”
Adv. Mater. Res.
,
651
, pp.
492
498
. 10.4028/www.scientific.net/AMR.651.492
24.
Esfahanian
,
V.
,
Ansari
,
A. B.
,
Bahramian
,
H.
,
Kheirkhah
,
P.
, and
Ahmadi
,
G.
,
2014
, “
Design Parameter Study on the Performance of Lead-Acid Batteries
,”
J. Mech. Sci. Technol.
,
28
(
6
), pp.
2221
2229
. 10.1007/s12206-014-0123-5
25.
Sun
,
D.-L.
,
Hu
,
C.
,
Wang
,
H.
, and
Jin
,
Y.
,
2017
, “
Effect of Physical Parameters of Activated Carbon on Lead-Carbon Battery
,”
Battery Bimon. (China)
,
47
(
5
), pp.
281
285
.
26.
Armstrong
,
M. J.
,
O’Dwyer
,
C.
,
Macklin
,
W. J.
, and
Holmes
,
J. D.
,
2013
, “
Evaluating the Performance of Nanostructured Materials as Lithium-Ion Battery Electrodes
,”
Nano Res.
,
7
(
1
), pp.
1
62
. 10.1007/s12274-013-0375-x 10.1007/s12274-013-0375-x
27.
Ebner
,
M.
,
Chung
,
D.-W.
,
García
,
R. E.
, and
Wood
,
V.
,
2014
, “
Tortuosity Anisotropy in Lithium-Ion Battery Electrodes
,”
Adv. Energy Mater.
,
4
, p.
1301278
. 10.1002/aenm.201470024
28.
Yu
,
D. Y. W.
,
Donoue
,
K.
,
Inoue
,
T.
,
Fujimoto
,
M.
, and
Fujitani
,
S.
,
2006
, “
Effect of Electrode Parameters on LiFePO4 Cathodes
,”
J. Electrochem. Soc.
,
153
(
5
), pp.
A835
A839
. 10.1149/1.2179199
29.
Xu
,
M.
, and
Wang
,
X.
,
2017
, “
Electrode Thickness Correlated Parameters Estimation for a Li-Ion NMC Battery Electrochemical Model
,”
Selected Proceedings From the 231st ECS Meeting
,
M.
Manivannan
,
S.
Narayan
,
R.
Kostecki
,
C.
Johnson
, and
P. B.
Atanassov
, eds.,
Electrochemical Society Inc
,
Pennington
, pp.
491
507
.
30.
Yu
,
S.
,
Chung
,
Y.
,
Song
,
M. S.
,
Nam
,
J. H.
, and
Cho
,
W. I.
,
2012
, “
Investigation of Design Parameter Effects on High Current Performance of Lithium-Ion Cells With LiFePO4/Graphite Electrodes
,”
J. Appl. Electrochem.
,
42
(
6
), pp.
443
453
. 10.1007/s10800-012-0418-0
31.
De
,
S.
,
Northrop
,
P. W. C.
,
Ramadesigan
,
V.
, and
Subramanian
,
V. R.
,
2013
, “
Model-Based Simultaneous Optimization of Multiple Design Parameters for Lithium-Ion Batteries for Maximization of Energy Density
,”
J. Power Sources
,
227
, pp.
161
170
. 10.1016/j.jpowsour.2012.11.035
You do not currently have access to this content.