Abstract

We report the synthesis of SnO2/multi-layer graphene nanocomposites by an easy low temperature (60 °C) electroless plating route. An aqueous suspension containing Sn(BF4)2 with multi-layer graphene is reacted at 60 °C in an acidic environment for 1 h, and Na2S2O4 is used to reduce tin ion from Sn(BF4)2. After electroless plating, the presence of SnO2 particle (15–35 nm) attached to the multi-layer graphene is confirmed by transmission electron microscopy. Tin oxide (SnO2) can be used to modify multi-layer graphene via electroless plating process decorating with oxygen-containing functional groups. It is found that the electroless plating has enhanced the electrochemical performance of SnO2 and multi-layer graphene that shows reasonably good capacity (∼243 mAh g−1 after 50 charge/discharge cycles) and high Coulombic efficiency (∼78%).

References

References
1.
Arico
,
A. S.
,
Bruce
,
P.
,
Scrosati
,
B.
,
Tarascon
,
J.-M.
, and
Schalkwijk
,
W. v.
,
2005
, “
Nanostructured Materials for Advanced Energy Conversion and Storage Devices
,”
Nat. Mater.
,
4
,
366
377
. 10.1038/nmat1368
2.
Bruce
,
P. G.
,
Scrosati
,
B.
, and
Tarascon
,
J. M.
,
2008
, “
Nanomaterials for Rechargeable Lithium Batteries
,”
Angew. Chem. Int. Ed. Engl.
,
47
, pp.
2930
2946
. 10.1002/anie.200702505
3.
Etacheri
,
V.
,
Marom
,
R.
,
Elazari
,
R.
,
Salitra
,
G.
, and
Aurbach
,
D.
,
2011
, “
Challenges in the Development of Advanced Li-Ion Batteries: A Review
,”
Energy Environ. Sci.
,
4
, p.
3243
. 10.1039/c1ee01598b
4.
Jiang
,
C.
,
Hosono
,
E.
, and
Zhou
,
H.
,
2006
, “
Nanomaterials for Lithium Ion Batteries
,”
Nano Today
,
1
, pp.
28
33
. 10.1016/S1748-0132(06)70114-1
5.
Kang
,
B.
, and
Ceder
,
G.
,
2009
, “
Battery Materials for Ultrafast Charging and Discharging
,”
Nature
,
458
, pp.
190
193
. 10.1038/nature07853
6.
Scrosati
,
B.
, and
Garche
,
J.
,
2010
, “
Lithium Batteries: Status, Prospects and Future
,”
J. Power Sources
,
195
, pp.
2419
2430
. 10.1016/j.jpowsour.2009.11.048
7.
Tarascon
,
J.-M.
, and
Armand
,
M.
,
2001
, “
Issues and Challenges Facing Rechargeable Lithium Batteries
,”
Macmillan Magazines Ltd.
,
414
, pp.
359
367
.
8.
Poizot
,
P.
,
Laruelle
,
S.
,
Grugeon
,
S.
,
Dupont
,
L.
, and
Tarascon
,
J.-M.
,
2000
, “
Nano-Sized Transition-Metal Oxides as Negative-Electrode Materials for Lithium-Ion Batteries
,”
Nature
,
407
, pp.
496
499
.
9.
Bai
,
Z.
,
Fan
,
N.
,
Ju
,
Z.
,
Guo
,
C.
,
Qian
,
Y.
, and
Tang
,
B.
,
2013
, “
Facile Synthesis of Mesoporous Mn3O4 Nanotubes and Their Excellent Performance for Lithium-Ion Batteries
,”
J. Mater. Chem. A
,
1
, p.
10985
. 10.1039/c3ta11910f
10.
Liu
,
S.-Y.
,
Xie
,
J.
,
Zheng
,
Y.-X.
,
Cao
,
G.-S.
,
Zhu
,
T.-J.
, and
Zhao
,
X.-B.
,
2012
, “
Nanocrystal Manganese Oxide (Mn3O4, MnO) Anchored on Graphite Nanosheet With Improved Electrochemical Li-Storage Properties
,”
Electrochim. Acta
,
66
, pp.
271
278
. 10.1016/j.electacta.2012.01.094
11.
Wang
,
Y.
,
Mu
,
H.
,
Liu
,
X.
,
An
,
P.
, and
Wang
,
C.
,
2013
, “
Analysis on Available Capability of Accommodating Wind Power in Shandong Power Grid
,” pp.
230
234
.
12.
Zhou
,
X.
,
Wan
,
L. J.
, and
Guo
,
Y. G.
,
2013
, “
Binding SnO2 Nanocrystals in Nitrogen-Doped Graphene Sheets as Anode Materials for Lithium-Ion Batteries
,”
Adv. Mater.
,
25
, pp.
2152
2157
. 10.1002/adma.201300071
13.
Zhu
,
Y. G.
,
Xie
,
J.
,
Cao
,
G. S.
,
Zhu
,
T. J.
, and
Zhao
,
X. B.
,
2013
, “
Facile Synthesis of C–Fe3O4–C Core–Shell Nanotubes by a Self-Templating Route and the Application as a High-Performance Anode for Li-Ion Batteries
,”
RSC Adv.
,
3
, p.
6787
. 10.1039/c3ra22350g
14.
Reddy
,
M. V.
,
Subba Rao
,
G. V.
, and
Chowdari
,
B. V.
,
2013
, “
Metal Oxides and Oxysalts as Anode Materials for Li Ion Batteries
,”
Chem. Rev.
,
113
, pp.
5364
5457
. 10.1021/cr3001884
15.
Birrozzi
,
A.
,
Raccichini
,
R.
,
Nobili
,
F.
,
Marinaro
,
M.
,
Tossici
,
R.
, and
Marassi
,
R.
,
2014
, “
High-Stability Graphene Nano Sheets/SnO2 Composite Anode for Lithium Ion Batteries
,”
Electrochim. Acta
,
137
, pp.
228
234
. 10.1016/j.electacta.2014.06.024
16.
Liu
,
R.
,
Li
,
N.
,
Xia
,
G.
,
Li
,
D.
,
Wang
,
C.
, and
Xiao
,
N.
,
2013
, “
Assembled Hollow and Core-Shell SnO2 Microspheres as Anode Materials for Li-Ion Batteries
,”
Mater. Lett.
,
93
, pp.
243
246
. 10.1016/j.matlet.2012.10.072
17.
Tan
,
C.
,
Cao
,
J.
,
Khattak
,
A. M.
,
Cai
,
F.
,
Jiang
,
B.
, and
Yang
,
G.
,
2014
, “
High-Performance tin Oxide-Nitrogen Doped Graphene Aerogel Hybrids as Anode Materials for Lithium-Ion Batteries
,”
J. Power Sources
,
270
, pp.
28
33
. 10.1016/j.jpowsour.2014.07.059
18.
Tian
,
Q.
,
Tian
,
Y.
,
Zhang
,
Z.
,
Yang
,
L.
, and
Hirano
,
S.-i.
,
2014
, “
Facile Synthesis of Ultrasmall Tin Oxide Nanoparticles Embedded in Carbon as High-Performance Anode for Lithium-Ion Batteries
,”
J. Power Sources
,
269
, pp.
479
485
. 10.1016/j.jpowsour.2014.07.019
19.
Wu
,
G.
,
Li
,
Z.
,
Wu
,
W.
, and
Wu
,
M.
,
2014
, “
Effects of Calcination on the Preparation of Carbon-Coated SnO2/Graphene as Anode Material for Lithium-Ion Batteries
,”
J. Alloys Compd.
,
615
, pp.
582
587
. 10.1016/j.jallcom.2014.06.143
20.
Wu
,
G.
,
Wu
,
M.
,
Wang
,
D.
,
Yin
,
L.
,
Ye
,
J.
, and
Deng
,
S.
,
2014
, “
A Facile Method for in-Situ Synthesis of SnO2/Graphene as a High Performance Anode Material for Lithium-Ion Batteries
,”
Appl. Surf. Sci.
,
315
, pp.
400
406
. 10.1016/j.apsusc.2014.07.188
21.
Zhou
,
H.
,
Zhong
,
Y.
,
He
,
Z.
,
zhang
,
L.
,
Wang
,
J.
, and
Zhang
,
J.
,
2014
, “
Highly Porous Ti/SnO2 Network Composite Film as Stable Binder-Free Anode Materials for Lithium Ion Batteries
,”
Appl. Surf. Sci.
,
314
, pp.
1
6
. 10.1016/j.apsusc.2014.06.124
22.
Zhang
,
W.-M.
,
Hu
,
J.-S.
,
Guo
,
Y.-G.
,
Zheng
,
S.-F.
,
Zhong
,
L.-S.
, and
Song
,
W.-G.
,
2008
, “
Tin-Nanoparticles Encapsulated in Elastic Hollow Carbon Spheres for High-Performance Anode Material in Lithium-Ion Batteries
,”
Adv. Mater.
,
20
, pp.
1160
1165
. 10.1002/adma.200701364
23.
Chang
,
C.-C.
,
Chen
,
Y.-C.
,
Huang
,
C.-W.
,
Su
,
Y. H.
, and
Hu
,
C.-C.
,
2013
, “
(Sn-Ti)O2 Nanocomposites for High-Capacity and High-Rate Lithium-Ion Storage
,”
Electrochim. Acta
,
99
, pp.
69
75
. 10.1016/j.electacta.2013.02.121
24.
Chen
,
J. S.
,
Cheah
,
Y. L.
,
Chen
,
Y. T.
,
Jayaprakash
,
N.
,
Madhavi
,
S.
, and
Yang
,
Y. H.
,
2009
, “
SnO2 Nanoparticles With Controlled Carbon Nanocoating as High-Capacity Anode
,”
J. Phys. Chem.
,
113
, pp.
20504
20508
.
25.
Liu
,
H.
,
Huang
,
J.
,
Li
,
X.
,
Liu
,
J.
, and
Zhang
,
Y.
,
2012
, “
SnO2 Nanorods Grown on Graphite as a High-Capacity Anode Material for Lithium Ion Batteries
,”
Ceram. Int.
,
38
, pp.
5145
5149
. 10.1016/j.ceramint.2012.03.019
26.
Scipioni
,
R.
,
Gazzoli
,
D.
,
Teocoli
,
F.
,
Palumbo
,
O.
,
Paolone
,
A.
, and
Ibris
,
N.
,
2014
, “
Preparation and Characterization of Nanocomposite Polymer Membranes Containing Functionalized SnO2 Additives
,”
Membranes
,
4
, pp.
123
142
. 10.3390/membranes4010123
27.
Xiong
,
D.
,
Li
,
X.
,
Shan
,
H.
,
Zhao
,
Y.
,
Dong
,
L.
, and
Xu
,
H.
,
2015
, “
Oxygen-Containing Functional Groups Enhancing Electrochemical Performance of Porous Reduced Graphene Oxide Cathode in Lithium Ion Batteries
,”
Electrochim. Acta
,
174
, pp.
762
769
. 10.1016/j.electacta.2015.06.041
28.
Müller
,
R.
, and
Mathur
,
S.
,
2014
, “
Graphene-SnO2 Nanocomposites for Lithium-Ion Battery Anodes
,”
Nanostruct. Mater. Nanotechnol.
,
VII
, pp.
67
73
.
29.
Berciaud
,
S.
,
Ryu
,
S.
,
Brus
,
L. E.
, and
Heinz
,
T. F.
,
2009
, “
Probing the Intrinsic Properties of Exfoliated Graphene—Raman Spectroscopy of Free-Standing Monolayers
,”
Nano Lett.
,
9
, pp.
346
352
. 10.1021/nl8031444
30.
Hwang
,
J. Y.
,
Kuo
,
C. C.
,
Chen
,
L. C.
, and
Chen
,
K. H.
,
2010
, “
Correlating Defect Density With Carrier Mobility in Large-Scaled Graphene Films: Raman Spectral Signatures for the Estimation of Defect Density
,”
Nanotechnology
,
21
, p.
465705
. 10.1088/0957-4484/21/46/465705
31.
Wu
,
J.-B
,
Lin
,
M.-L
,
Cong
,
X.
,
Liu
,
H.-N
, and
Tan
,
P.-H
,
2018
, “
Raman Spectroscopy of Graphene-Based Materials and its Applications in Related Devices
,”
Chem. Soc. Rev.
,
47
, pp.
1822
1873
.
32.
Ferrari
,
A. C.
,
2007
, “
Raman Spectroscopy of Graphene and Graphite: Disorder, Electron–Phonon Coupling, Doping and Nonadiabatic Effects
,”
Solid State Commun.
,
143
, pp.
47
57
. 10.1016/j.ssc.2007.03.052
33.
Ferrari
,
A. C.
,
Meyer
,
J. C.
,
Scardaci
,
V.
,
Casiraghi
,
C.
,
Lazzeri
,
M.
, and
Mauri
,
F.
,
2006
, “
Raman Spectrum of Graphene and Graphene Layers
,”
Phys. Rev. Lett.
,
97
, p.
187401
. 10.1103/PhysRevLett.97.187401
34.
Maultzsch
,
J.
,
Reich
,
S.
, and
Thomsen
,
C.
,
2004
, “
Double-resonant Raman Scattering in Graphite: Interference Effects, Selection Rules, and Phonon Dispersion
,”
Phys. Rev. B
,
70
. 10.1103/PhysRevB.70.155403
35.
Guo
,
J.
,
Jiang
,
B.
,
Zhang
,
X.
, and
Liu
,
H.
,
2014
, “
Monodisperse SnO2 Anchored Reduced Graphene Oxide Nanocomposites as Negative Electrode With High Rate Capability and Long Cyclability for Lithium-Ion Batteries
,”
J. Power Sources
,
262
, pp.
15
22
. 10.1016/j.jpowsour.2014.03.085
36.
Pfanzelt
,
M.
,
Kubiak
,
P.
, and
Wohlfahrt-Mehrens
,
M.
,
2010
, “
Nanosized TiO2 Rutile With High Capacity and Excellent Rate Capability
,”
Electrochem. Solid-State Lett.
,
13
, p.
A91
. 10.1149/1.3422472
37.
Indris
,
S.
,
Ulrich
,
A. S.
,
Hahn
,
H.
,
Becker
,
S.
, and
Scheuermann
,
M.
, “
Nanocrystalline Composites Containing SnO2 as New Anode Materials for Li-Ion Batteries
,” https://pdfs.semanticscholar.org/b9ec/3952cf32acafcff40751d6e61c0805c24aa1.pdf
38.
Park
,
J.-W.
, and
Park
,
C.-M.
,
2015
, “
A Fundamental Understanding of Li Insertion/Extraction Behaviors in SnO and SnO2
,”
J. Electrochem. Soc.
,
162
, pp.
A2811
A2816
. 10.1149/2.0891514jes
39.
Wang
,
C.
,
Appleby
,
A. J.
, and
Little
,
F. E.
,
2002
, “
Electrochemical Study of the SnO2 Lithium-Insertion Anode Using Microperturbation Techniques
,”
Solid State Ionics
,
147
, pp.
13
22
. 10.1016/S0167-2738(02)00041-3
40.
Zhu
,
J.
,
Lu
,
Z.
,
Aruna
,
S. T.
,
Aurbach
,
D.
, and
Gedanken
,
A.
,
2000
, “
Sonochemical Synthesis of SnO2 Nanoparticles and Their Preliminary Study as Li Insertion Electrodes
,”
Chem. Mater.
,
12
, pp.
2557
2566
. 10.1021/cm990683l
41.
Courtney
,
I. A.
, and
Dahn
,
J. R.
,
1997
, “
Electrochemical and In Situ X-Ray Diffraction Studies of the Reaction of Lithium With Tin Oxide Composites
,”
J. Electrochem. Soc.
,
144
(
6
), pp.
2045
2052
.
42.
Courtney
,
I. A.
, and
Dahn
,
J. R.
,
1997
, “
Key Factors Controlling the Reversibility of the Reaction of Lithium With SnO2 and Sn2BPO6
,”
J. Electrochem. Soc.
,
144
(
9
), pp.
2943
2948
.
43.
Jeschull
,
F.
,
Brandell
,
D.
,
Edström
,
K.
, and
Lacey
,
M. J.
,
2015
, “
A Stable Graphite Negative Electrode for the Lithium-Sulfur Battery
,”
Chem. Commun.
,
51
, pp.
17100
17103
. 10.1039/C5CC06666B
44.
Wang
,
D.
,
Vijapur
,
S.
, and
Botte
,
G.
,
2014
, “
Coal Char Derived Few-Layer Graphene Anodes for Lithium Ion Batteries
,”
Photonics
,
1
, pp.
251
259
. 10.3390/photonics1030251
You do not currently have access to this content.