Abstract

In this article, proton exchange membranes (PEMs) are used as separators for lead-acid batteries. Ion migration experiments are conducted to prove the efficacy of PEMs in blocking the passage of antimony ions. The cells are then assembled into a battery to undergo charge–discharge, life cycle, and electrolyte loss testing. The results show that PEMs are effective at reducing the migration of antimony ions from the cathode alloy grid to the anode while suppressing hydrogen formation and electrolyte loss, which greatly improves coulombic efficiency and cycle life of the battery.

References

References
1.
Bagshaw
,
N. E.
,
1995
, “
Lead Alloys: Past, Present and Future
,”
J. Power Sources
,
53
(
1
), pp.
25
30
. 10.1016/0378-7753(94)01973-Y
2.
Seikh
,
A. H.
,
Sherif
,
E. M.
,
Khan Mohammed
,
S. M. A.
,
Baiq
,
M.
,
Alam
,
M. A.
, and
Alharthi
,
N.
,
2018
, “
Microstructure Characterization and Corrosion Resistance Properties of Pb-Sb Alloys for Lead Acid Battery Spine Produced by Different Casting Methods
,”
PLoS One
,
13
(
4
), p.
e0195224
. 10.1371/journal.pone.0195224
3.
Tizpar
,
A.
, and
Ghasemi
,
Z.
,
2006
, “
Influence of Silver on the Anodic Corrosion and Gas Evolution of Pb-Sb-As-Se Alloys as Positive Grids in Lead Acid Batteries
,”
Appl. Surf. Sci.
,
252
(
22
), pp.
7801
7808
. 10.1016/j.apsusc.2005.09.020
4.
Tizpar
,
A.
, and
Ghasemi
,
Z.
,
2006
, “
The Corrosion Inhibition and Gas Evolution Studies of Some Surfactants and Citric Acid on Lead Alloy in 12.5 M H2SO4 Solution
,”
Appl. Surf. Sci.
,
252
(
24
), pp.
8630
8634
. 10.1016/j.apsusc.2005.11.084
5.
Pavlov
,
D.
,
Dakhouche
,
A.
, and
Rogachev
,
T.
,
1993
, “
Influence of Antimony on the Electrochemical Behavior and the Structure of the Lead Dioxide Active Mass of Lead/Acid Batteries
,”
J. Power Sources
,
42
(
5
), pp.
71
78
. 10.1016/0378-7753(93)80138-F
6.
Pavlov
,
D.
,
Dakhouche
,
A.
, and
Rogachev
,
T.
,
1990
, “
Influence of Arsenic, Antimony and Bismuth on the Properties of Lead/Acid Battery Positive Plates
,”
J. Power Sources
,
30
(
9
), pp.
117
129
. 10.1016/0378-7753(93)80068-Z
7.
Babić
,
R.
,
Metikoš-Hukovića
,
M.
,
Lajgy
,
N.
, and
Barinic
,
S.
,
1994
, “
The Effect of Alloying With Antimony on the Electrochemical Properties of Lead
,”
J. Power Sources
,
52
(
1
), pp.
17
24
. 10.1016/0378-7753(94)01925-8
8.
Yahmadi
,
R.
,
Brik
,
K.
, and
Ammar
,
F. B.
,
2018
, “
Causal Tree Analysis for Quality Control of the Lead Acid Battery Manufacturing Process
,”
Int. J. Energy Res.
,
42
(
4
), pp.
1738
1759
. 10.1002/er.3987
9.
Rocca
,
E.
, and
Steinmetz
,
J.
,
2003
, “
Passivation Phenomenon of Low Antimony Alloys in Deep Discharge Conditions of Lead-Acid Batteries
,”
J. Electroanal. Chem.
,
543
(
2
), pp.
153
160
. 10.1016/S0022-0728(03)00016-0
10.
Azzollini
,
I. A.
,
Felice
,
V. D.
,
Fraboni
,
F.
,
Cavallucci
,
L.
,
Breschi
,
M.
,
Rosa
,
A. D.
, and
Zini
,
G.
,
2018
, “
Lead-Acid Battery Modeling Over Full State of Charge and Discharge Range
,”
IEEE Trans. Power Syst.
,
33
(
4
), pp.
6422
6429
. 10.1109/TPWRS.2018.2850049
11.
Zhang
,
R. W.
,
Liu
,
C. C.
,
Ma
,
C. C.
,
Wang
,
M. Y.
, and
Yao
,
Y. G.
,
2018
, “
Nodal Line Semimetal States in Positive Electrode Material of Lead-Acid Battery: Lead Dioxide Family and its Derivatives
,”
Phys. Rev. B
,
98
(
3
), p.
035144
. 10.1103/PhysRevB.98.035144
12.
Tai
,
J.
,
Li
,
F. J.
,
Zhou
,
Y. Q.
,
Fan
,
Z. Z.
,
Wei
,
H. M.
,
Zhang
,
D.
, and
Lei
,
L. X.
,
2018
, “
Synthesis and Characterisation of Tribasic Lead Sulphate as the Negative Active Material of Lead-Acid Battery
,”
J. Solid State Chem.
,
22
(
8
), pp.
2829
2835
. 10.1007/s10008-018-3998-8
13.
Agmon
,
N.
,
1995
, “
The Grotthuss Mechanism
,”
Chem. Phys. Lett.
,
244
(
5–6
), pp.
456
462
. 10.1016/0009-2614(95)00905-J
14.
Harada
,
M.
,
Araki
,
S.
,
Kimura
,
T.
,
Shibahara
,
T.
,
Iwasaki
,
T.
,
Okoshi
,
T.
,
Terada
,
S.
, and
Terada
,
M.
,
2018
, “
New Separator With Hydrophilic Surface Treatment for Flooded-Type Lead-Acid Battery
,”
J. Energy Storage
,
16
(
5
), pp.
197
202
. 10.1016/j.est.2018.01.011
15.
Stevenson
,
P. R.
,
2003
, “
Advanced Separator Construction for Long Life Valve-Regulated Lead-Acid Batteries
,”
J. Power Sources
,
116
(
3
), pp.
160
168
. 10.1016/S0378-7753(02)00688-2
16.
Ferreira
,
A.
,
Jordan
,
J.
,
Wertz
,
J.
, and
Zguris
,
G. C.
,
2004
, “
Manufacturing Improvements in the Processing of Lead-Acid Battery Plates and Reduction in Plate Dusting With an Active-Material Additive
,”
J. Power Sources
,
133
(
1
), pp.
39
46
. 10.1016/j.jpowsour.2003.12.010
17.
Ball
,
R. J.
,
Evans
,
R.
, and
Stevens
,
R.
,
2002
, “
Study of Valve-Regulated Lead/Acid Batteries Manufactured With Different Separator Papers
,”
J. Power Sources
,
104
(
8
), pp.
208
220
. 10.1016/S0378-7753(01)00925-9
18.
Rosentsvit
,
L.
,
Park
,
S.
, and
Yossifon
,
G.
,
2017
, “
Effect of Advection on Transient Ion Concentration-Polarization Phenomenon
,”
Phys. Rev. E
,
96
(
2–1
), p.
023104
. 10.1103/PhysRevE.96.023104
19.
Vincent
,
P. E.
, and
Weinberg
,
P. D.
,
2014
, “
Flow-Dependent Concentration Polarization and the Endothelial Glycocalyx Layer: Multi-Scale Aspects of Arterial Mass Transport and Their Implications for Atherosclerosis
,”
Biomech. Model. Mechanobiol.
,
13
(
2
), pp.
313
326
. 10.1007/s10237-013-0512-1
You do not currently have access to this content.