Abstract

Higher power output by a lower kinetic resistance of the vanadium redox flow battery is needed for its commercialization. In this study, we focused on the air oxidation conditions of carbon paper, which is the electrode material, to reduce the kinetic resistance. The air oxidation is considered to affect the number of surface oxygen groups such as the phenol-type hydroxyl group due to oxidation of the carbon fiber. The surface oxygen groups may correspond to the active sites for the charge/discharge reaction. We quantitatively evaluated the number of surface oxygen groups by temperature-programmed desorption. In addition, we measured the double-layer capacitances of the carbon papers, which may reflect the surface area of the carbon fiber. The single-cell performances, i.e., current–voltage curves and charge–discharge profile, of the electrodes were studied. The air oxidized carbon paper, heat-treated at 500 °C for 3 h (8.4% mass decrease from the pristine sample), showed the highest power density (960 mW cm−2) in this study with thin electrode material (ca., 0.2 mm for one sheet). The negative half-reaction was enhanced by air oxidation. This result could be explained by the reduction of the kinetic resistance by increasing the number of phenol groups, and this power output was relatively high as the vanadium redox flow battery by using a commercial carbon paper and the standard flow field.

References

References
1.
Sum
,
E.
, and
Skyllas-Kazacos
,
M.
,
1985
, “
A Study of the V(II)/V(III) Redox Couple for Redox Flow Cell Applications
,”
J. Power Sources
,
15
(
2–3
), pp.
179
190
. 10.1016/0378-7753(85)80071-9
2.
Sum
,
E.
,
Rychcik
,
M.
, and
Skyllas-Kazacos
,
M.
,
1985
, “
Investigation of the V(V)/V(IV) System for Use in the Positive Half Cell of a Redox Battery
,”
J. Power Sources
,
16
(
2
), pp.
85
95
. 10.1016/0378-7753(85)80082-3
3.
Parasuraman
,
A.
,
Lim
,
T. M.
,
Menictas
,
C.
, and
Skyllas-Kazacos
,
M.
,
2013
, “
Review of Material Research and Development for Vanadium Redox Flow Battery Applications
,”
Electrochim. Acta
,
101
, pp.
27
40
. 10.1016/j.electacta.2012.09.067
4.
Tsushima
,
S.
,
2016
, “Large-Scale Electrical Energy Storage Systems,”
Energy Technology Roadmaps of Japan
,
Y.
Kato
,
M.
Koyama
,
Y.
Fukushima
, and
T.
Nakagaki
, eds.,
Springer
,
New York
, pp.
123
134
.
5.
Manahan
,
M. P.
,
Liu
,
Q. H.
,
Gross
,
M. L.
, and
Mench
,
M. M.
,
2013
, “
Carbon Nanoporous Layer for Reaction Location Management and Performance Enhancement in All-Vanadium Redox Flow Batteries
,”
J. Power Sources
,
222
(
15
), pp.
498
502
. 10.1016/j.jpowsour.2012.08.097
6.
Aaron
,
D.
,
Sun
,
C.-N.
,
Bright
,
M.
,
Papandrew
,
A. B.
,
Mench
,
M. M.
, and
Zawodzinski
,
T. A.
,
2013
, “
In Situ Kinetics Studies in All-Vanadium Redox Flow Batteries
,”
ECS Electrochem. Lett.
,
2
(
3
), pp.
A29
A31
. 10.1149/2.001303eel
7.
Tseng
,
T.-M.
,
Huang
,
R.-H.
,
Huang
,
C.-Y.
,
Liu
,
C.-C.
,
Hsueh
,
K.-L.
, and
Shieu
,
F.-S.
,
2014
, “
Carbon Felt Coated With Titanium Dioxide/Carbon Black Composite as Negative Electrode for Vanadium Redox Flow Battery
,”
J. Electrochem. Soc.
,
161
(
6
), pp.
A1132
A1138
. 10.1149/2.102406jes
8.
Dennison
,
C. R.
,
Agar
,
E.
,
Akuzum
,
B.
, and
Kumbur
,
E. C.
,
2015
, “
Enhancing Mass Transport in Redox Flow Batteries by Tailoring Flow Field and Electrode Design
,”
J. Electrochem. Soc.
,
163
(
1
), pp.
A5163
A5169
. 10.1149/2.0231601jes
9.
Reed
,
D.
,
Thomsen
,
E.
,
Wang
,
W.
,
Nie
,
Z.
,
Li
,
B.
,
Wei
,
X.
,
Koeppel
,
B.
, and
Sprenkle
,
V.
,
2015
, “
Performance of Nafion® N115, Nafion® NR-212, and Nafion® NR-211 in a 1 KW Class All Vanadium Mixed Acid Redox Flow Battery
,”
J. Power Sources
,
285
(
212
), pp.
425
430
. 10.1016/j.jpowsour.2015.03.099
10.
Gandomi
,
Y. A.
,
Aaron
,
D. S.
,
Zawodzinski
,
T. A.
, and
Mench
,
M. M.
,
2016
, “
In Situ Potential Distribution Measurement and Validated Model for All-Vanadium Redox Flow Battery
,”
J. Electrochem. Soc.
,
163
(
1
), pp.
A5188
A5201
. 10.1149/2.0211601jes
11.
Boettcher
,
P. A.
,
Agar
,
E.
,
Dennison
,
C. R.
, and
Kumbur
,
E. C.
,
2016
, “
Modeling of Ion Crossover in Vanadium Redox Flow Batteries: A Computationally-Efficient Lumped Parameter Approach for Extended Cycling
,”
J. Electrochem. Soc.
,
163
(
1
), pp.
A5244
A5252
. 10.1149/2.0311601jes
12.
Zhou
,
X. L.
,
Zeng
,
Y. K.
,
Zhu
,
X. B.
,
Wei
,
L.
, and
Zhao
,
T. S.
,
2016
, “
A High-Performance Dual-Scale Porous Electrode for Vanadium Redox Flow Batteries
,”
J. Power Sources
,
325
(
1
), pp.
329
336
. 10.1016/j.jpowsour.2016.06.048
13.
Clement
,
J. T.
,
Aaron
,
D. S.
, and
Mench
,
M. M.
,
2016
, “
In Situ Localized Current Distribution Measurements in All-Vanadium Redox Flow Batteries
,”
J. Electrochem. Soc.
,
163
(
1
), pp.
A5220
A5228
. 10.1149/2.0241601jes
14.
Liu
,
S.
,
Kok
,
M.
,
Kim
,
Y.
,
Barton
,
J. L.
,
Brushett
,
F. R.
, and
Gostick
,
J.
,
2017
, “
Evaluation of Electrospun Fibrous Mats Targeted for Use as Flow Battery Electrodes
,”
J. Electrochem. Soc.
,
164
(
9
), pp.
A2038
A2048
. 10.1149/2.1301709jes
15.
Aaron
,
D.
,
Yeom
,
S.
,
Kihm
,
K. D.
,
Ashraf Gandomi
,
Y.
,
Ertugrul
,
T.
, and
Mench
,
M. M.
,
2017
, “
Kinetic Enhancement via Passive Deposition of Carbon-Based Nanomaterials in Vanadium Redox Flow Batteries
,”
J. Power Sources
,
366
(
31
), pp.
241
248
. 10.1016/j.jpowsour.2017.08.108
16.
Maggiolo
,
D.
,
Picano
,
F.
, and
Guarnieri
,
M.
,
2016
, “
Flow and Dispersion in Anisotropic Porous Media: A Lattice-Boltzmann Study
,”
Phys. Fluids
,
28
(
10
), p.
102001
. 10.1063/1.4963766
17.
Zhang
,
M.
,
Moore
,
M.
,
Watson
,
J. S.
,
Zawodzinski
,
T. A.
, and
Counce
,
R. M.
,
2012
, “
Capital Cost Sensitivity Analysis of an All-Vanadium Redox-Flow Battery
,”
J. Electrochem. Soc.
,
159
(
8
), pp.
A1183
A1188
. 10.1149/2.041208jes
18.
Sato
,
Y.
,
2017
, “
Overview of Redox Flow Batteries
,”
Electrochemistry
,
85
(
3
), pp.
147
150
10.5796/electrochemistry.85.147. (in Japanese).
19.
Negishi
,
A.
,
Kaneko
,
H.
, and
Nozaki
,
K.
,
1993
, “
Characterization of Carbon Electrode Materials for Flow Type Batteries
,”
Denki Kagaku
,
61
(
12
), pp.
1442
1448
.
20.
Wei
,
G.
,
Liu
,
J.
,
Zhao
,
H.
, and
Yan
,
C.
,
2013
, “
Electrospun Carbon Nanofibres as Electrode Materials Toward VO2+/VO2+ Redox Couple for Vanadium Flow Battery
,”
J. Power Sources
,
241
, pp.
709
717
. 10.1016/j.jpowsour.2013.05.008
21.
Wei
,
G.
,
Fan
,
X.
,
Liu
,
J.
, and
Yan
,
C.
,
2014
, “
Investigation of the Electrospun Carbon Web as the Catalyst Layer for Vanadium Redox Flow Battery
,”
J. Power Sources
,
270
, pp.
634
645
. 10.1016/j.jpowsour.2014.07.161
22.
Aaron
,
D. S.
,
Liu
,
Q.
,
Tang
,
Z.
,
Grim
,
G. M.
,
Papandrew
,
A. B.
,
Turhan
,
A.
,
Zawodzinski
,
T. A.
, and
Mench
,
M. M.
,
2012
, “
Dramatic Performance Gains in Vanadium Redox Flow Batteries Through Modified Cell Architecture
,”
J. Power Sources
,
206
, pp.
450
453
. 10.1016/j.jpowsour.2011.12.026
23.
Liu
,
Q. H.
,
Grim
,
G. M.
,
Papandrew
,
A. B.
,
Turhan
,
A.
,
Zawodzinski
,
T. A.
, and
Mench
,
M. M.
,
2012
, “
High Performance Vanadium Redox Flow Batteries With Optimized Electrode Configuration and Membrane Selection
,”
J. Electrochem. Soc.
,
159
(
8
), pp.
A1246
A1252
. 10.1149/2.051208jes
24.
Maruyama
,
J.
,
Hasegawa
,
T.
,
Iwasaki
,
S.
,
Fukuhara
,
T.
, and
Nogami
,
M.
,
2013
, “
Mechanism of Dioxovanadium Ion Reduction on Oxygen-Enriched Carbon Surface
,”
J. Electrochem. Soc.
,
160
(
8
), pp.
A1293
A1298
. 10.1149/2.108308jes
25.
Kim
,
K. J.
,
Park
,
M. S.
,
Kim
,
Y. J.
,
Kim
,
J. H.
,
Dou
,
S. X.
, and
Skyllas-Kazacos
,
M.
,
2015
, “
A Technology Review of Electrodes and Reaction Mechanisms in Vanadium Redox Flow Batteries
,”
J. Mater. Chem. A
,
3
(
33
), pp.
16913
16933
. 10.1039/C5TA02613J
26.
Sun
,
B.
, and
Skyllas-Kazacos
,
M.
,
1992
, “
Modification of Graphite Electrode Materials for Vanadium Redox Flow Battery Application—I. Thermal Treatment
,”
Electrochim. Acta
,
37
, pp.
1253
1260
. 10.1016/0013-4686(92)85064-R
27.
Pezeshki
,
A. M.
,
Clement
,
J. T.
,
Veith
,
G. M.
,
Zawodzinski
,
T. A.
, and
Mench
,
M. M.
,
2015
, “
High Performance Electrodes in Vanadium Redox Flow Batteries Through Oxygen-Enriched Thermal Activation
,”
J. Power Sources
,
294
, pp.
333
338
. 10.1016/j.jpowsour.2015.05.118
28.
Sun
,
B.
, and
Skyllas-Kazacos
,
M.
,
1992
, “
Chemical Modification of Graphite Electrode Materials for Vanadium Redox Flow Battery Application—Part II. Acid Treatments
,”
Electrochim. Acta
,
37
(
13
), pp.
2459
2465
. 10.1016/0013-4686(92)87084-D
29.
Yue
,
L.
,
Li
,
W.
,
Sun
,
F.
,
Zhao
,
L.
, and
Xing
,
L.
,
2010
, “
Highly Hydroxylated Carbon Fibres as Electrode Materials of All-Vanadium Redox Flow Battery
,”
Carbon
,
48
(
11
), pp.
3079
3090
. 10.1016/j.carbon.2010.04.044
30.
Kim
,
K. J.
,
Lee
,
S.-W.
,
Yim
,
T.
,
Kim
,
J.-G.
,
Choi
,
J. W.
,
Kim
,
J. H.
,
Park
,
M.-S.
, and
Kim
,
Y.-J.
,
2014
, “
A New Strategy for Integrating Abundant Oxygen Functional Groups Into Carbon Felt Electrode for Vanadium Redox Flow Batteries
,”
Sci. Rep.
,
4
, p.
6906
. 10.1038/srep06906
31.
Zhang
,
W.
,
Xi
,
J.
,
Li
,
Z.
,
Zhou
,
H.
,
Liu
,
L.
,
Wu
,
Z.
, and
Qiu
,
X.
,
2013
, “
Electrochemical Activation of Graphite Felt Electrode for VO2+/VO2+ Redox Couple Application
,”
Electrochim. Acta
,
89
, pp.
429
435
. 10.1016/j.electacta.2012.11.072
32.
Pour
,
N.
,
Kwabi
,
D. G.
,
Carney
,
T. J.
,
Darling
,
R. M.
,
Perry
,
M. L.
, and
Shao-Horn
,
Y.
,
2015
, “
Influence of Edge- and Basal-Plane Sites on the Vanadium Redox Kinetics for Flow Batteries—Supporting Information
,”
J. Phys. Chem. C
,
119
(
10
), pp.
5311
5318
. 10.1021/jp5116806
33.
Greco
,
K. V.
,
Forner-Cuenca
,
A.
,
Mularczyk
,
A.
,
Eller
,
J.
, and
Brushett
,
F. R.
,
2018
, “
Elucidating the Nuanced Effects of Thermal Pretreatment on Carbon Paper Electrodes for Vanadium Redox Flow Batteries
,”
ACS Appl. Mater. Interfaces
,
10
(
51
), pp.
44430
44442
. 10.1021/acsami.8b15793
34.
Rabbow
,
T. J.
, and
Whitehead
,
A. H.
,
2017
, “
Deconvolution of Electrochemical Double Layer Capacitance Between Fractions of Active and Total Surface Area of Graphite Felts
,”
Carbon
,
111
, pp.
782
788
. 10.1016/j.carbon.2016.10.064
35.
Figueiredo
,
J.
,
Pereira
,
M. F.
,
Freitas
,
M. M.
, and
Órfão
,
J. J.
,
1999
, “
Modification of the Surface Chemistry of Activated Carbons
,”
Carbon
,
37
(
9
), pp.
1379
1389
. 10.1016/S0008-6223(98)00333-9
36.
Tsushima
,
S.
,
Sasaki
,
S.
, and
Hirai
,
S.
,
2013
, “
Influence of Cell Geometry and Operating Parameters on Performance of a Redox Flow Battery With Serpentine and Interdigitated Flow Fields
,”
Proceedings of 224th ECS Meeting
,
San Francisco, CA
,
Oct. 29
, No. 1664.
37.
Tsushima
,
S.
, and
Suzuki
,
T.
,
2016
, “
Redox Flow Batteries with Advanced Flow Field Design and Improved Electrode Properties
,”
J. Heat Transfer Soc. Jpn.
,
55
(
230
), pp.
41
50
. (in Japanese).
38.
Tsushima
,
S.
,
Yamamoto
,
K.
, and
Suzuki
,
T.
,
2017
, “
Investigation of Electrode Losses in All-Vanadium Redox Flow Batteries With an Interdigitated Flow Field
,”
Proceedings of 232nd ECS Meeting
,
National Harbor, MD
,
Oct. 1
, No. 0006.
39.
Funahashi
,
S.
,
1999
, “
Dynamic Characterization of Metal Ions and Their Complexation Rates
,”
Bunseki Kagaku
,
48
(
1
), pp.
3
20
10.2116/bunsekikagaku.48.3. (in Japanese with English abstract).
40.
Merbach
,
A. E.
,
1982
, “
The Elucidation of Solvent Exchange Mechanisms by High-Pressure NMR Studies
,”
Pure Appl. Chem.
,
54
(
8
), pp.
1479
1493
. 10.1351/pac198254081479
41.
Hugi
,
A. D.
,
Helm
,
L.
, and
Merbach
,
A. E.
,
1985
, “
Water Exchange on Hexaaquavanadium(III): A Variable-Temperature and Variable-Pressure 17O-NMR Study at 1.4 and 4.7 Tesla
,”
Helv. Chim. Acta
,
68
(
2
), pp.
508
521
. 10.1002/hlca.19850680224
42.
Kuroiwa
,
Y.
,
Harada
,
M.
,
Tomiyama
,
H.
, and
Fukutomi
,
H.
,
1988
, “
High Pressure Oxygen-17 NMR Study on the Kinetics of Water Exchange Reaction in Pentaquaoxovanadium(IV)
,”
Inorg. Chim. Acta
,
146
(
1
), pp.
7
8
. 10.1016/S0020-1693(00)80019-5
43.
Yamada
,
S.
,
Ukei
,
Y.
, and
Tanaka
,
M.
,
1976
, “
Kinetics and Mechanism of the Complexation Reactions of Pervanadyl Ion With Some Aminopolycarboxylates
,”
Inorg. Chem.
,
15
(
4
), pp.
964
967
. 10.1021/ic50158a048
44.
Mench
,
M.
,
Zawodzinski
,
T.
, and
Sun
,
C. N.
, “
High Power High Efficiency Flow Type Battery
,” US Patent No. US 2015/0072261 A1.
45.
Houser
,
J.
,
Pezeshki
,
A.
,
Clement
,
J. T.
,
Aaron
,
D.
, and
Mench
,
M. M.
,
2017
, “
Architecture for Improved Mass Transport and System Performance in Redox Flow Batteries
,”
J. Power Sources
,
351
, pp.
96
105
. 10.1016/j.jpowsour.2017.03.083
46.
Yang
,
H.
,
Fan
,
C.
, and
Zhu
,
Q.
,
2017
, “
Activated Charcoal Modified Graphite Felt Using for Positive Electrodes of Vanadium Redox Flow Battery
,”
ASME J. Electrochem. Energy Convers. Storage
,
14
(
4
), p.
041004
. 10.1115/1.4037532
You do not currently have access to this content.