Abstract

Electric vehicles (EVs) are estimated as the most sustainable solutions for future transportation requirements. However, there are various problems related to the battery pack module and one such problem is invariable high-temperature differences across the battery pack module due to the discharging and charging of batteries under operating conditions of EVs. High-temperature differences across the battery module contribute to the degradation of maximum charge storage and capacity of Li-ion batteries which ultimately affects the performance of EVs. To address this problem, a finite element modeling (FEM) based automated neural network search (ANS) approach is proposed. The research methodology constitutes of four stages: design of air-cooled battery pack module, setup of the FEM constraints and thermal equations, formulating the predictive model on generated data using ANS, and lastly performing multi-objective response optimization of the best fit predictive model to formulate optimum design constraints for the air-cooled battery module. For efficient thermal management of the battery module, an empirical model is formulated using the mentioned methodology for minimizing the maximum temperature differences, standard deviation of temperature across the battery pack module, and battery pack volume. The results obtained are as follows: (1) the battery pack module volume is reduced from 0.003279 m3 to 0.002321 m3 by 29.21%, (2) the maximum temperature differences across the eight cells of battery pack module declines from 6.81 K to 4.38 K by 35.66%, and (3) the standard deviation of temperature across battery pack decreases from 4.38 K to 0.93 K by 78.69%. Thus, the predictive empirical model enhances the thermal management and safety factor of battery module.

References

References
1.
Masayoshi
,
W. A. D. A.
,
2009
, “
Research and Development of Electric Vehicles for Clean Transportation
,”
J. Environ. Sci.
,
21
(
6
), pp.
745
749
. 10.1016/S1001-0742(08)62335-9
2.
Skerlos
,
S. J.
, and
Winebrake
,
J. J.
,
2010
, “
Targeting Plug-In Hybrid Electric Vehicle Policies to Increase Social Benefits
,”
Energy Policy
,
38
(
2
), pp.
705
708
. 10.1016/j.enpol.2009.11.014
3.
Avadikyan
,
A.
, and
Llerena
,
P.
,
2010
, “
A Real Options Reasoning Approach to Hybrid Vehicle Investments
,”
Technol. Forecast. Social Change
,
77
(
4
), pp.
649
661
. 10.1016/j.techfore.2009.12.002
4.
Peterson
,
S. B.
,
Whitacre
,
J. F.
, and
Apt
,
J.
,
2010
, “
The Economics of Using Plug-In Hybrid Electric Vehicle Battery Packs for Grid Storage
,”
J. Power Sources
,
195
(
8
), pp.
2377
2384
. 10.1016/j.jpowsour.2009.09.070
5.
Kempton
,
W.
, and
Letendre
,
S. E.
,
1997
, “
Electric Vehicles as a New Power Source for Electric Utilities
,”
Trans. Res. Part D: Trans. Environ.
,
2
(
3
), pp.
157
175
. 10.1016/S1361-9209(97)00001-1
6.
Hawkins
,
T. R.
,
Singh
,
B.
,
Majeau-Bettez
,
G.
, and
Strømman
,
A. H.
,
2013
, “
Comparative Environmental Life Cycle Assessment of Conventional and Electric Vehicles
,”
J. Ind. Ecol.
,
17
(
1
), pp.
53
64
. 10.1111/j.1530-9290.2012.00532.x
7.
Woo
,
J.
,
Choi
,
H.
, and
Ahn
,
J.
,
2017
, “
Well-to-Wheel Analysis of Greenhouse Gas Emissions for Electric Vehicles Based on Electricity Generation Mix: A Global Perspective
,”
Trans. Res. Part D: Trans. Environ.
,
51
, pp.
340
350
. 10.1016/j.trd.2017.01.005
8.
Lowe
,
M.
,
Tokuoka
,
S.
,
Trigg
,
T.
, and
Gereffi
,
G.
,
2010
,
Lithium-Ion Batteries for Electric Vehicles: The US Value Chain
,
Center on Globalization, Governance & Competitiveness Duke University
,
Durham, NC
.
9.
Du
,
J.
, and
Ouyang
,
M.
,
2013
, “
Review of Electric Vehicle Technologies Progress and Development Prospect in China
,”
Electric Vehicle Symposium and Exhibition (EVS27)
,
Barcelona, Spain
,
Nov. 17–20
,
IEEE
, pp.
1
8
.
10.
Wen
,
X.
, and
Xiao
,
C.
,
2011
, “
Electric Vehicle Key Technology Research in China
,”
International Aegean Conference on Electrical Machines and Power Electronics and Electromotion Joint Conference
,
Istanbul, Turkey
,
Sept. 8–10
,
IEEE
, pp.
308
314
.
11.
Chen
,
X.
,
Shen
,
W.
,
Vo
,
T. T.
,
Cao
,
Z.
, and
Kapoor
,
A.
,
2012
, “
An Overview of Lithium-Ion Batteries for Electric Vehicles
,”
10th International Power & Energy Conference (IPEC)
,
Ho Chi Minh City, Vietnam
,
Dec. 12–14
,
IEEE
, pp.
230
235
.
12.
Iclodean
,
C.
,
Varga
,
B.
,
Burnete
,
N.
,
Cimerdean
,
D.
, and
Jurchiş
,
B.
,
2017
, “
Comparison of Different Battery Types for Electric Vehicles
,”
IOP Conference Series: Materials Science and Engineering (Vol. 252, No. 1)
,
Pitesti, Romania
,
Nov. 8–10
,
IOP Publishing
, pp.
012058
.
13.
Broussely
,
M.
,
Planchat
,
J. P.
,
Rigobert
,
G.
,
Virey
,
D.
, and
Sarre
,
G.
,
1997
, “
Lithium-Ion Batteries for Electric Vehicles: Performances of 100 Ah Cells
,”
J. Power Sources
,
68
(
1
), pp.
8
12
. 10.1016/S0378-7753(96)02544-X
14.
Lindgren
,
J.
, and
Lund
,
P. D.
,
2016
, “
Effect of Extreme Temperatures on Battery Charging and Performance of Electric Vehicles
,”
J. Power Sources
,
328
, pp.
37
45
. 10.1016/j.jpowsour.2016.07.038
15.
Leng
,
F.
,
Tan
,
C. M.
, and
Pecht
,
M.
,
2015
, “
Effect of Temperature on the Aging Rate of Li Ion Battery Operating Above Room Temperature
,”
Sci. Rep.
,
5
, p.
12967
. 10.1038/srep12967
16.
Aris
,
A. M.
, and
Shabani
,
B.
,
2017
, “
An Experimental Study of a Lithium Ion Cell Operation at Low Temperature Conditions
,”
Energy Proc.
,
110
, pp.
128
135
. 10.1016/j.egypro.2017.03.117
17.
von Lüders
,
C.
,
Zinth
,
V.
,
Erhard
,
S. V.
,
Osswald
,
P. J.
,
Hofmann
,
M.
,
Gilles
,
R.
, and
Jossen
,
A.
,
2017
, “
Lithium Plating in Lithium-Ion Batteries Investigated by Voltage Relaxation and In Situ Neutron Diffraction
,”
J. Power Sources
,
342
, pp.
17
23
. 10.1016/j.jpowsour.2016.12.032
18.
Park
,
C.
, and
Jaura
,
A. K.
,
2003
, “
Dynamic Thermal Model of Li-Ion Battery for Predictive Behavior in Hybrid and Fuel Cell Vehicles
,” (No. 2003-01-2286), SAE Technical Paper.
19.
Bhatia
,
P. C.
,
2013
, “
Thermal Analysis of Lithium-Ion Battery Packs and Thermal Management Solutions
,” Doctoral dissertation,
The Ohio State University
,
Columbus, OH
.
20.
Xia
,
G.
,
Cao
,
L.
, and
Bi
,
G.
,
2017
, “
A Review on Battery Thermal Management in Electric Vehicle Application
,”
J. Power Sources
,
367
, pp.
90
105
. 10.1016/j.jpowsour.2017.09.046
21.
De Vita
,
A.
,
Maheshwari
,
A.
,
Destro
,
M.
,
Santarelli
,
M.
, and
Carello
,
M.
,
2017
, “
Transient Thermal Analysis of a Lithium-Ion Battery Pack Comparing Different Cooling Solutions for Automotive Applications
,”
Appl. Energy
,
206
, pp.
101
112
. 10.1016/j.apenergy.2017.08.184
22.
Wang
,
T.
,
Tseng
,
K. J.
,
Zhao
,
J.
, and
Wei
,
Z.
,
2014
, “
Thermal Investigation of Lithium-Ion Battery Module With Different cell Arrangement Structures and Forced Air-Cooling Strategies
,”
Appl. Energy
,
134
, pp.
229
238
. 10.1016/j.apenergy.2014.08.013
23.
Huber
,
C.
,
2017
, “
Phase Change Material in Battery Thermal Management Applications
,” Doctoral dissertation,
Technische Universität München
,
Munich, Germany
.
24.
Jaguemont
,
J.
,
Omar
,
N.
,
Van den Bossche
,
P.
, and
Mierlo
,
J.
,
2018
, “
Phase-Change Materials (PCM) for Automotive Applications: A Review
,”
Appl. Therm. Eng.
,
132
, pp.
308
320
. 10.1016/j.applthermaleng.2017.12.097
25.
Liu
,
H.
,
Wei
,
Z.
,
He
,
W.
, and
Zhao
,
J.
,
2017
, “
Thermal Issues About Li-Ion Batteries and Recent Progress in Battery Thermal Management Systems: A Review
,”
Energy Convers. Manage.
,
150
, pp.
304
330
. 10.1016/j.enconman.2017.08.016
26.
Park
,
H.
,
2013
, “
A Design of Air Flow Configuration for Cooling Lithium Ion Battery in Hybrid Electric Vehicles
,”
J. Power Sources
,
239
, pp.
30
36
. 10.1016/j.jpowsour.2013.03.102
27.
Xun
,
J.
,
Liu
,
R.
, and
Jiao
,
K.
,
2013
, “
Numerical and Analytical Modeling of Lithium Ion Battery Thermal Behaviors With Different Cooling Designs
,”
J. Power Sources
,
233
, pp.
47
61
. 10.1016/j.jpowsour.2013.01.095
28.
Yang
,
N.
,
Zhang
,
X.
,
Li
,
G.
, and
Hua
,
D.
,
2015
, “
Assessment of the Forced Air-Cooling Performance for Cylindrical Lithium-Ion Battery Packs: A Comparative Analysis Between Aligned and Staggered Cell Arrangements
,”
Appl. Therm. Eng.
,
80
, pp.
55
65
. 10.1016/j.applthermaleng.2015.01.049
29.
Wang
,
T.
,
Tseng
,
K. J.
, and
Zhao
,
J.
,
2015
, “
Development of Efficient Air-Cooling Strategies for Lithium-Ion Battery Module Based on Empirical Heat Source Model
,”
Appl. Therm. Eng.
,
90
, pp.
521
529
. 10.1016/j.applthermaleng.2015.07.033
30.
Li
,
W.
,
Xiao
,
M.
,
Peng
,
X.
,
Garg
,
A.
, and
Gao
,
L.
,
2019
, “
A Surrogate Thermal Modeling and Parametric Optimization of Battery Pack With Air Cooling for EVs
,”
Appl. Therm. Eng.
,
147
, pp.
90
100
. 10.1016/j.applthermaleng.2018.10.060
31.
Liao
,
X.
,
Ma
,
C.
,
Peng
,
X.
,
Garg
,
A.
, and
Bao
,
N.
,
2019
, “
Temperature Distribution Optimization of an Air-Cooling Lithium-Ion Battery Pack in Electric Vehicles Based on the Response Surface Method
,”
ASME J. Electrochem. Energy Convers. Storage
,
16
(
4
), p.
041002
. 10.1115/1.4042922
32.
Yun
,
L.
,
Maddila
,
S.
,
Gao
,
L.
,
Peng
,
X.
,
Niu
,
X.
,
Garg
,
A.
, and
Chin
,
C. M. M.
,
2019
, “
An Integrated Framework for Minimization of Inter Lithium-Ion Cell Temperature Differences and the Total Volume of the Cell of Battery Pack for Electric Vehicles
,”
Energy Storage
,
1
(
2
), p.
e41
. 10.1002/est2.41
33.
Zhao
,
J.
,
Rao
,
Z.
, and
Li
,
Y.
,
2015
, “
Thermal Performance of Mini-Channel Liquid Cooled Cylinder Based Battery Thermal Management for Cylindrical Lithium-Ion Power Battery
,”
Energy Convers. Manage.
,
103
, pp.
157
165
. 10.1016/j.enconman.2015.06.056
34.
Huo
,
Y.
,
Rao
,
Z.
,
Liu
,
X.
, and
Zhao
,
J.
,
2015
, “
Investigation of Power Battery Thermal Management by Using Mini-Channel Cold Plate
,”
Energy Convers. Manage.
,
89
, pp.
387
395
. 10.1016/j.enconman.2014.10.015
35.
Hwang
,
H. Y.
,
Chen
,
Y. S.
, and
Chen
,
J. S.
,
2015
, “
Optimizing the Heat Dissipation of an Electric Vehicle Battery Pack
,”
Adv. Mech. Eng.
,
7
(
1
), p.
204131
. 10.1155/2014/204131
36.
Shui
,
L.
,
Chen
,
F.
,
Garg
,
A.
,
Peng
,
X.
,
Bao
,
N.
, and
Zhang
,
J.
,
2018
, “
Design Optimization of Battery Pack Enclosure for Electric Vehicle
,”
Struct. Multidiscip. Optim.
,
58
(
1
), pp.
331
347
. 10.1007/s00158-018-1901-y
37.
Fan
,
L.
,
Khodadadi
,
J. M.
, and
Pesaran
,
A. A.
,
2013
, “
A Parametric Study on Thermal Management of an Air-Cooled Lithium-Ion Battery Module for Plug-in Hybrid Electric Vehicles
,”
J. Power Sources
,
238
, pp.
301
312
. 10.1016/j.jpowsour.2013.03.050
38.
Ling
,
Z.
,
Wang
,
F.
,
Fang
,
X.
,
Gao
,
X.
, and
Zhang
,
Z.
,
2015
, “
A Hybrid Thermal Management System for Lithium Ion Batteries Combining Phase Change Materials With Forced-Air Cooling
,”
Appl. Energy
,
148
, pp.
403
409
. 10.1016/j.apenergy.2015.03.080
39.
Chaturvedi
,
D. K.
,
2008
,
Soft Computing: Techniques and Its Applications in Electrical Engineering
(Vol.
103
),
Springer
,
New York
.
You do not currently have access to this content.