Abstract

The main goal of this work is to study the role of energy storage in the context of the Portuguese power system by the year 2030. Portugal is one of the countries in the world with more installed energy storage capacity, namely pumped hydro storage (PHS). The simulations are performed with energyplan tool and allow us to predict the energy mix in Portugal by the year 2030; to forecast the utilization of the storage capacity, namely projections for the energy produced by PHS; to estimate CO2 emissions and percentage of renewable energy sources (RES) utilization; to assess the necessary storage capacity to avoid renewable curtailment; and to evaluate the future needs of installing further storage capacity, either with more PHS capacity or with the introduction of batteries. PHS revealed that it is important to avoid the curtailment of renewable energy, especially in a scenario of higher RES shares. It is shown that the increase in RES contribution would decrease the overall costs of the system, leading to thinking that further efforts should be made to increase the RES installed capacity and go beyond the official RES predictions for 2030. It is also concluded that the predicted storage capacity for 2030 can accommodate the expected increase in variable renewable generation without any further need for investments in PHS or battery solutions.

References

1.
Ralon
,
P.
, and
Taylor
,
M.
,
2017
,
Electricity Storage and Renewables: Costs and Markets to 2030
,
IRENA
,
Abu Dhabi
.
2.
Zakeri
,
B.
, and
Syri
,
S.
,
2014
, “
Economy of Electricity Storage in the Nordic Electricity Market: The Case for Finland
,”
11th International Conference on the European Energy Market (EEM14)
,
Krakow
,
May 28–30
, pp.
1
6
.
3.
Lazard
,
2016
,
Lazard’s Levelized Cost of Storage—Version 2.0
. https://www.lazard.com/media/438042/lazard-levelized-cost-of-storage-v20.pdf, Accessed April 2018.
4.
Connolly
,
D.
,
Lund
,
H.
,
Mathiesen
,
B. V.
,
Pican
,
E.
, and
Leahy
,
M.
,
2012
, “
The Technical and Economic Implications of Integrating Fluctuating Renewable Energy Using Energy Storage
,”
Renewable Energy
,
43
, pp.
47
60
. 10.1016/j.renene.2011.11.003
5.
Lund
,
H.
, and
Mathiesen
,
B. V.
,
2009
, “
Energy System Analysis of 100% Renewable Energy Systems—The Case of Denmark in Years 2030 and 2050
,”
Energy
,
34
(
5
), pp.
524
531
. 10.1016/j.energy.2008.04.003
6.
Krajačić
,
G.
,
Duić
,
N.
, and
Carvalho
,
M. G.
,
2011
, “
How to Achieve a 100% RES Electricity Supply for Portugal?
,”
Appl. Energy
,
88
(
2
), pp.
508
517
. 10.1016/j.apenergy.2010.09.006
7.
Fernandes
,
L.
, and
Ferreira
,
P.
,
2014
, “
Renewable Energy Scenarios in the Portuguese Electricity System
,”
Energy
,
69
, pp.
51
57
. 10.1016/j.energy.2014.02.098
8.
Lund
,
H.
, and
Münster
,
E.
,
2003
, “
Management of Surplus Electricity-Production From a Fluctuating Renewable-Energy Source
,”
Appl. Energy
,
76
(
1–3
), pp.
65
74
. 10.1016/S0306-2619(03)00048-5
9.
Zakeri
,
B.
, and
Syri
,
S.
,
2015
, “
Electrical Energy Storage Systems: A Comparative Life Cycle Cost Analysis
,”
Renewable Sustainable Energy Rev.
,
42
, pp.
569
596
. 10.1016/j.rser.2014.10.011
10.
Hadjipaschalis
,
I.
,
Poullikkas
,
A.
, and
Efthimiou
,
V.
,
2009
, “
Overview of Current and Future Energy Storage Technologies for Electric Power Applications
,”
Renewable Sustainable Energy Rev.
,
13
(
6–7
), pp.
1513
1522
. 10.1016/j.rser.2008.09.028
11.
Manz
,
D.
,
Keller
,
J.
, and
Miller
,
N.
,
2011
, “
Value Propositions for Utility-Scale Energy Storage
,”
2011 IEEE/PES Power Systems Conference and Exposition
,
Phoenix, AZ
,
Mar. 20–23
, pp.
1
10
.
12.
Li
,
J.
,
Wang
,
S.
,
Ye
,
L.
, and
Fang
,
J.
,
2018
, “
A Coordinated Dispatch Method With Pumped-Storage and Battery-Storage for Compensating the Variation of Wind Power
,”
Prot. Control Mod. Power Syst.
,
3
(
2
), pp.
1
14
. 10.1186/s41601-017-0074-9
13.
Walker
,
S. B.
,
Mukherjee
,
U.
,
Fowler
,
M.
, and
Elkamel
,
A.
,
2016
, “
Benchmarking and Selection of Power-to-Gas Utilizing Electrolytic Hydrogen as an Energy Storage Alternative
,”
Int. J. Hydrogen Energy
,
41
(
19
), pp.
7717
7731
. 10.1016/j.ijhydene.2015.09.008
14.
Bussar
,
C.
,
Stöcker
,
P.
,
Cai
,
Z.
,
Moraes
,
L.
, Jr.
,
Magnor
,
D.
,
Wiernes
,
P.
,
van Bracht
,
N.
,
Moser
,
A.
, and
Sauer
,
D. U.
,
2016
, “
Large-Scale Integration of Renewable Energies and Impact on Storage Demand in a European Renewable Power System of 2050—Sensitivity Study
,”
J. Energy Storage
,
6
, pp.
1
10
. 10.1016/j.est.2016.02.004
15.
Connolly
,
D.
,
Lund
,
H.
,
Mathiesen
,
B. V.
, and
Leahy
,
M.
,
2010
, “
A Review of Computer Tools for Analysing the Integration of Renewable Energy Into Various Energy Systems
,”
Appl. Energy
,
87
(
4
), pp.
1059
1082
. 10.1016/j.apenergy.2009.09.026
16.
Lund
,
H.
,
2015
,
EnergyPLAN Documentation Version 12.
https://energyplan.eu/wp-content/uploads/2013/06/EnergyPLAN-Documentation-Version12.pdf, Accessed April 2018.
17.
Connolly
,
D.
,
2015
,
Finding and Inputting Data Into the EnergyPLAN Tool Version 5.
https://energyplan.eu/wp-content/uploads/2013/06/Finding-and-Inputting-Data-into-the-EnergyPLAN-Tool-v5.pdf, Accessed April 2018.
18.
DGEG
,
2017
,
Relatório de Monitorização da Segurança de Abastecimento do Sistema Elétrico Nacional 2017–2030.
https://www.sgeconomia.gov.pt/ficheiros-externos-sg/dgeg-relatorio-de-monitorizacao-deseguranca-de-abastecimento-gas-natural-2018-pdf.aspx, Accessed April 2018.
19.
REN—Rede Eléctrica Nacional
,
2015
,
DADOS TÉCNICOS 2014.
http://www.centrodeinformacao.ren.pt/PT/InformacaoTecnica/DadosTecnicos/REN%20Dados%20T%C3%A9cnicos%202014.pdf, Accessed April 2018.
20.
Connoly
,
D.
,
2016
,
EnergyPLAN Cost Database
,
Sustainable Energy Planning Research Group, Aalborg University
, Version 3.1. http://energy.plan.aau.dk/A%20User's%20Guide%20to%20EnergyPLAN%20v1.3.pdf, Accessed April 2018.
You do not currently have access to this content.