Abstract

Gas diffusion layer (GDL) and its interfaces with the flow-channel and microporous layer or catalyst layer in polymer electrolyte fuel cells (PEFCs) play a significant role in water management and heat removal from the cells. Both surface morphology and surface wettability of GDL influence and control the water transport in PEFCs. Thus, the surface morphology and selectivity of its surface wettability are critical for PEFCs to provide optimum outputs. In this study, we have reported the fabrications of GDLs with a selective wetting pattern. Sigracet® GDLs were used as a substrate and two different monomers, polydimethylsiloxane (PDMS) added with fumed silica (Si) and fluorinated ethylene propylene (FEP), were used to print a selective pattern on the GDL surfaces. The evaluations of printed GDL surfaces, by means of static contact angle, sliding angles, and scanning electron microscopy image show that superhydrophobicity was achieved with both FEP and PDMS-Si coatings. Fourier transform infrared spectroscopy analysis confirmed the successful introduction of the functional groups in both the coatings. Finally, pore size distributions, sliding angle measurements, and adhesion forces were used to investigate the interactions between the water droplets and GDL surfaces. The results of this study demonstrate that the present approach provides a novel but simple way to tune GDL surfaces with selective wetting properties and obtain superhydrophobic interfaces. The electrochemical results showed that an improvement can be achieved for the performance of PEFCs with patterned GDL/flow-channel interfaces.

References

References
1.
Bernardi
,
D. M.
,
1990
, “
Water-Balance Calculations for Solid-Polymer-Electrolyte Fuel Cells
,”
J. Electrochem. Soc.
,
137
(
11
), pp.
3344
3350
. 10.1149/1.2086220
2.
Bernardi
,
D. M.
, and
Verbrugge
,
M. W.
,
1991
, “
Mathematical Model of a Gas-Diffusion Electrode Bonded to a Polymer Electrolyte
,”
AIChE J.
,
37
(
8
), pp.
1151
1163
. 10.1002/aic.690370805
3.
Springer
,
T. E.
,
Zawodzinski
,
T. A.
, and
Gottesfeld
,
S.
,
1991
, “
Polymer Electrolyte Fuel Cell Model
,”
J. Electrochem. Soc.
,
138
(
8
), pp.
2334
2342
. 10.1149/1.2085971
4.
Fuller
,
T. F.
, and
Newman
,
J.
,
1993
, “
Water and Thermal Management in Solid-Polymer-Electrolyte Fuel-Cells
,”
J. Electrochem. Soc.
,
140
(
5
), pp.
1218
1225
. 10.1149/1.2220960
5.
Weber
,
A. Z.
,
Balasubramanian
,
S.
, and
Das
,
P. K.
,
2012
, “Proton Exchange Membrane Fuel Cells,”
Fuel Cell Engineering
, Vol.
41
,
K.
Sundmacher
, ed.,
Academic Press
,
Amsterdam
, pp.
65
144
.
6.
Weber
,
A. Z.
,
Borup
,
R. L.
,
Darling
,
R. M.
,
Das
,
P. K.
,
Dursch
,
T. J.
,
Gu
,
W. B.
,
Harvey
,
D.
,
Kusoglu
,
A.
,
Litster
,
S.
,
Mench
,
M. M.
,
Mukundan
,
R.
,
Owejan
,
J. P.
,
Pharoah
,
J. G.
,
Secanell
,
M.
, and
Zenyuk
,
I. V.
,
2014
, “
A Critical Review of Modeling Transport Phenomena in Polymer-Electrolyte Fuel Cells
,”
J. Electrochem. Soc.
,
161
(
12
), pp.
F1254
F1299
. 10.1149/2.0751412jes
7.
Machado
,
B. S.
,
Chakraborty
,
N.
, and
Das
,
P. K.
,
2017
, “
Influences of Flow Direction, Temperature and Relative Humidity on the Performance of a Representative Anion Exchange Membrane Fuel Cell: A Computational Analysis
,”
Int. J. Hydrogen Energy
,
42
(
9
), pp.
6310
6323
. 10.1016/j.ijhydene.2016.12.003
8.
Xing
,
L.
,
Shi
,
W.
,
Su
,
H.
,
Xu
,
Q.
,
Das
,
P. K.
,
Mao
,
B.
, and
Scott
,
K.
,
2019
, “
Membrane Electrode Assemblies for PEM Fuel Cells: A Review of Functional Graded Design and Optimization
,”
Energy
,
177
, pp.
445
464
. 10.1016/j.energy.2019.04.084
9.
Das
,
P. K.
,
Li
,
X.
,
Xie
,
Z.
, and
Liu
,
Z. S.
,
2011
, “
Effects of Catalyst Layer Structure and Wettability on Liquid Water Transport in Polymer Electrolyte Membrane Fuel Cell
,”
Int. J. Energy Res.
,
35
(
15
), pp.
1325
1339
. 10.1002/er.1873
10.
Balliet
,
R. J.
, and
Newman
,
J.
,
2011
, “
Cold-Start Modeling of a Polymer-Electrolyte Fuel Cell Containing an Ultrathin Cathode
,”
J. Electrochem. Soc.
,
158
(
9
), pp.
B1142
B1149
. 10.1149/1.3607968
11.
Das
,
P. K.
, and
Weber
,
A. Z.
,
2013
, “
Water Management in PEMFC With Ultra-Thin Catalyst-Layers
,”
Proceedings of the ASME 11th Fuel Cell Science, Engineering, and Technology Conference
, Paper No. FuelCell2013-18010, p.
V001T001A002
.
12.
Xing
,
L.
,
Das
,
P. K.
,
Song
,
X. G.
,
Mamlouk
,
M.
, and
Scott
,
K.
,
2015
, “
Numerical Analysis of the Optimum Membrane/Ionomer Water Content of PEMFCs: The Interaction of Nafion (R) Ionomer Content and Cathode Relative Humidity
,”
Appl. Energy
,
138
, pp.
242
257
. 10.1016/j.apenergy.2014.10.011
13.
Zenyuk
,
I. V.
,
Das
,
P. K.
, and
Weber
,
A. Z.
,
2016
, “
Understanding Impacts of Catalyst-Layer Thickness on Fuel-Cell Performance Via Mathematical Modeling
,”
J. Electrochem. Soc.
,
163
(
7
), pp.
F691
F703
. 10.1149/2.1161607jes
14.
Xing
,
L.
,
Shi
,
W. D.
,
Das
,
P. K.
, and
Scott
,
K.
,
2017
, “
Inhomogeneous Distribution of Platinum and Ionomer in the Porous Cathode to Maximize the Performance of a PEM Fuel Cell
,”
AIChE J.
,
63
(
11
), pp.
4895
4910
. 10.1002/aic.15826
15.
Machado
,
B. S.
,
Chakraborty
,
N.
,
Mamlouk
,
M.
, and
Das
,
P. K.
,
2018
, “
A Three-Dimensional Agglomerate Model of an Anion Exchange Membrane Fuel Cell
,”
J. Electrochem. Energy Convers. Storage
,
15
(
1
), p.
011004
. 10.1115/1.4037942
16.
Xing
,
L.
,
Xu
,
Y.
,
Das
,
P. K.
,
Mao
,
B.
,
Xu
,
Q.
,
Su
,
H.
,
Wu
,
X.
, and
Shi
,
W.
,
2019
, “
Numerical Matching of Anisotropic Transport Processes in Porous Electrodes of Proton Exchange Membrane Fuel Cells
,”
Chem. Eng. Sci.
,
195
, pp.
127
140
. 10.1016/j.ces.2018.11.034
17.
Weber
,
A. Z.
, and
Newman
,
J.
,
2004
, “
Modeling Transport in Polymer-Electrolyte Fuel Cells
,”
Chem. Rev.
,
104
(
10
), pp.
4679
4726
. 10.1021/cr020729l
18.
Mathur
,
V. K.
, and
Crawford
,
J.
,
2007
, “Fundamentals of Gas Diffusion Layers in PEM Fuel Cells,”
Recent Trends in Fuel Cell Science and Technology
,
S.
Basu
, ed.,
Springer
,
New York, NY
, pp.
116
128
.
19.
Das
,
P. K.
,
Li
,
X.
, and
Liu
,
Z. S.
,
2007
, “
Analytical Approach to Polymer Electrolyte Membrane Fuel Cell Performance and Optimization
,”
J. Electroanal. Chem.
,
604
(
2
), pp.
72
90
. 10.1016/j.jelechem.2007.02.028
20.
Sinha
,
P. K.
,
Mukherjee
,
P. P.
, and
Wang
,
C. Y.
,
2007
, “
Impact of GDL Structure and Wettability on Water Management in Polymer Electrolyte Fuel Cells
,”
J. Mater. Chem.
,
17
(
30
), pp.
3089
3103
. 10.1039/b703485g
21.
Santamaria
,
A. D.
,
Das
,
P. K.
,
MacDonald
,
J. C.
, and
Weber
,
A. Z.
,
2014
, “
Liquid-Water Interactions With Gas-Diffusion-Layer Surfaces
,”
J. Electrochem. Soc.
,
161
(
12
), pp.
F1184
F1193
. 10.1149/2.0321412jes
22.
Das
,
P. K.
,
Li
,
X.
, and
Liu
,
Z. S.
,
2010
, “
Analysis of Liquid Water Transport in Cathode Catalyst Layer of PEM Fuel Cells
,”
Int. J. Hydrogen Energy
,
35
(
6
), pp.
2403
2416
. 10.1016/j.ijhydene.2009.12.160
23.
Aieta
,
N. V.
,
Das
,
P. K.
,
Perdue
,
A.
,
Bender
,
G.
,
Herring
,
A. M.
,
Weber
,
A. Z.
, and
Ulsh
,
M. J.
,
2012
, “
Applying Infrared Thermography as a Quality-Control Tool for the Rapid Detection of Polymer-Electrolyte-Membrane-Fuel-Cell Catalyst-Layer-Thickness Variations
,”
J. Power Sources
,
211
, pp.
4
11
. 10.1016/j.jpowsour.2012.02.030
24.
Das
,
P. K.
,
Weber
,
A. Z.
,
Bender
,
G.
,
Manak
,
A.
,
Bittinat
,
D.
,
Herring
,
A. M.
, and
Ulsh
,
M.
,
2014
, “
Rapid Detection of Defects in Fuel-Cell Electrodes Using Infrared Reactive-Flow-Through Technique
,”
J. Power Sources
,
261
, pp.
401
411
. 10.1016/j.jpowsour.2013.11.124
25.
Kuwertz
,
R.
,
Aoun
,
N.
,
Turek
,
T.
, and
Kunz
,
U.
,
2016
, “
Influence of PTFE Content in Gas Diffusion Layers Used for Gas-Phase Hydrogen Chloride Electrolysis With Oxygen Depolarized Cathode
,”
J. Electrochem. Soc.
,
163
(
9
), pp.
F988
F997
. 10.1149/2.0261609jes
26.
Quick
,
C.
,
Ritzinger
,
D.
,
Lehnert
,
W.
, and
Hartnig
,
C.
,
2009
, “
Characterization of Water Transport in Gas Diffusion Media
,”
J. Power Sources
,
190
(
1
), pp.
110
120
. 10.1016/j.jpowsour.2008.07.093
27.
Zheng
,
Q. S.
,
Yu
,
Y.
, and
Zhao
,
Z. H.
,
2005
, “
Effects of Hydraulic Pressure on the Stability and Transition of Wetting Modes of Superhydrophobic Surfaces
,”
Langmuir
,
21
(
26
), pp.
12207
12212
. 10.1021/la052054y
28.
Das
,
P. K.
,
Grippin
,
A.
,
Kwong
,
A.
, and
Weber
,
A. Z.
,
2012
, “
Liquid-Water-Droplet Adhesion-Force Measurements on Fresh and Aged Fuel-Cell Gas-Diffusion Layers
,”
J. Electrochem. Soc.
,
159
(
5
), pp.
B489
B496
. 10.1149/2.052205jes
29.
Das
,
P. K.
,
Santamaria
,
A. D.
, and
Weber
,
A. Z.
,
2015
, “
Interactions Between Liquid-Water and Gas-Diffusion Layers in Polymer-Electrolyte Fuel Cells
,”
Procedia Eng.
,
105
, pp.
751
756
. 10.1016/j.proeng.2015.05.066
30.
Zamel
,
N.
, and
Li
,
X.
,
2013
, “
Effective Transport Properties for Polymer Electrolyte Membrane Fuel Cells—With a Focus on the Gas Diffusion Layer
,”
Prog. Energy Combust. Sci.
,
39
(
1
), pp.
111
146
. 10.1016/j.pecs.2012.07.002
31.
Miller
,
J. D.
,
Veeramasuneni
,
S.
,
Drelich
,
J.
,
Yalamanchili
,
M. R.
, and
Yamauchi
,
G.
,
1996
, “
Effect of Roughness as Determined by Atomic Force Microscopy on the Wetting Properties of PTFE Thin Films
,”
Polym. Eng. Sci.
,
36
(
14
), pp.
1849
1855
. 10.1002/pen.10580
32.
Wenzel
,
R. N.
,
1936
, “
Resistance of Solid Surfaces to Wetting by Water
,”
Ind. Eng. Chem.
,
28
(
8
), pp.
988
994
. 10.1021/ie50320a024
33.
Cassie
,
A. B. D.
, and
Baxter
,
S.
,
1944
, “
Wettability of Porous Surfaces
,”
Trans. Faraday Soc.
,
40
(
0
), pp.
546
551
. 10.1039/tf9444000546
34.
Tian
,
P.
, and
Guo
,
Z. G.
,
2017
, “
Bioinspired Silica-Based Superhydrophobic Materials
,”
Appl. Surf. Sci.
,
426
, pp.
1
18
. 10.1016/j.apsusc.2017.07.134
35.
He
,
B.
,
Lee
,
J.
, and
Patankar
,
N. A.
,
2004
, “
Contact Angle Hysteresis on Rough Hydrophobic Surfaces
,”
Colloids Surf. A
,
248
(
1–3
), pp.
101
104
.
36.
Furmidge
,
C. G. L.
,
1962
, “
Studies at Phase Interfaces. I. The Sliding of Liquid Drops on Solid Surfaces and a Theory for Spray Retention
,”
J. Colloid Sci.
,
17
(
4
), pp.
309
324
. 10.1016/0095-8522(62)90011-9
37.
David
,
R.
, and
Neumann
,
A. W.
,
2013
, “
Energy Barriers Between the Cassie and Wenzel States on Random, Superhydrophobic Surfaces
,”
Colloids Surf. A
,
425
, pp.
51
58
.
38.
Yoon
,
G. H.
, and
Park
,
Y. I.
,
2012
, “
Enhanced Hydrophobicity of GDL by a Novel Coating Process in PEM Fuel Cells
,”
Int. J. Precis. Eng. Manuf.
,
13
(
7
), pp.
1153
1159
. 10.1007/s12541-012-0153-9
39.
Thomas
,
Y. R. J.
,
Benayad
,
A.
,
Schroder
,
M.
,
Morin
,
A.
, and
Pauchet
,
J.
,
2015
, “
New Method for Super Hydrophobic Treatment of Gas Diffusion Layers for Proton Exchange Membrane Fuel Cells Using Electrochemical Reduction of Diazonium Salts
,”
ACS Appl. Mater. Interfaces
,
7
(
27
), pp.
15068
15077
. 10.1021/acsami.5b04428
40.
Nguyen
,
T. V.
,
Ahosseini
,
A.
,
Wang
,
X. H.
,
Yarlagadda
,
V.
,
Kwong
,
A.
,
Weber
,
A. Z.
,
Deevanhxay
,
P.
,
Tsushima
,
S.
, and
Hirai
,
S.
,
2015
, “
Hydrophobic Gas-Diffusion Media for Polymer-Electrolyte Fuel Cells by Direct Fluorination
,”
J. Electrochem. Soc.
,
162
(
14
), pp.
F1451
F1460
. 10.1149/2.0411514jes
41.
Koresawa
,
R.
, and
Utaka
,
Y.
,
2014
, “
Improvement of Oxygen Diffusion Characteristic in Gas Diffusion Layer With Planar-Distributed Wettability for Polymer Electrolyte Fuel Cell
,”
J. Power Sources
,
271
, pp.
16
24
. 10.1016/j.jpowsour.2014.05.151
42.
Latorrata
,
S.
,
Balzarotti
,
R.
,
Stampino
,
P. G.
,
Cristiani
,
C.
,
Dotelli
,
G.
, and
Guilizzoni
,
M.
,
2015
, “
Design of Properties and Performances of Innovative Gas Diffusion Media for Polymer Electrolyte Membrane Fuel Cells
,”
Prog. Org. Coat.
,
78
, pp.
517
525
. 10.1016/j.porgcoat.2014.05.028
43.
Prasanna
,
M.
,
Ha
,
H. Y.
,
Cho
,
E. A.
,
Hong
,
S. A.
, and
Oh
,
I. H.
,
2004
, “
Influence of Cathode Gas Diffusion Media on the Performance of the PEMFCs
,”
J. Power Sources
,
131
(
1–2
), pp.
147
154
. 10.1016/j.jpowsour.2004.01.030
44.
Benziger
,
J.
,
Nehlsen
,
J.
,
Blackwell
,
D.
,
Brennan
,
T.
, and
Itescu
,
J.
,
2005
, “
Water Flow in the Gas Diffusion Layer of PEM Fuel Cells
,”
J. Membr. Sci.
,
261
(
1–2
), pp.
98
106
. 10.1016/j.memsci.2005.03.049
45.
Chen
,
J.
,
Matsuura
,
T.
, and
Hori
,
M.
,
2004
, “
Novel Gas Diffusion Layer With Water Management Function for PEMFC
,”
J. Power Sources
,
131
(
1–2
), pp.
155
161
. 10.1016/j.jpowsour.2004.01.007
46.
Xing
,
L.
,
Wang
,
Y.
,
Das
,
P. K.
,
Scott
,
K.
, and
Shi
,
W.
,
2018
, “
Homogenization of Current Density of PEM Fuel Cells by In-Plane Graded Distributions of Platinum Loading and GDL Porosity
,”
Chem. Eng. Sci.
,
192
, pp.
699
713
. 10.1016/j.ces.2018.08.029
47.
Le
,
A. D.
, and
Zhou
,
B.
,
2009
, “
Fundamental Understanding of Liquid Water Effects on the Performance of a PEMFC With Serpentine-Parallel Channels
,”
Electrochim. Acta
,
54
(
8
), pp.
2137
2154
. 10.1016/j.electacta.2008.10.029
48.
Forner-Cuenca
,
A.
,
Biesdorf
,
J.
,
Gubler
,
L.
,
Kristiansen
,
P. M.
,
Schmidt
,
T. J.
, and
Boillat
,
P.
,
2015
, “
Engineered Water Highways in Fuel Cells: Radiation Grafting of Gas Diffusion Layers
,”
Adv. Mater.
,
27
(
41
), pp.
6317
6322.
10.1002/adma.201503557
49.
Jin
,
M. H.
,
Feng
,
X. J.
,
Xi
,
J. M.
,
Zhai
,
J.
,
Cho
,
K. W.
,
Feng
,
L.
, and
Jiang
,
L.
,
2005
, “
Super-Hydrophobic PDMS Surface With Ultra-Low Adhesive Force
,”
Macromol. Rapid Commun.
,
26
(
22
), pp.
1805
1809
. 10.1002/marc.200500458
50.
Davaasuren
,
G.
,
Ngo
,
C. V.
,
Oh
,
H. S.
, and
Chun
,
D. M.
,
2014
, “
Geometric Study of Transparent Superhydrophobic Surfaces of Molded and Grid Patterned Polydimethylsiloxane (PDMS)
,”
Appl. Surf. Sci.
,
314
, pp.
530
536
. 10.1016/j.apsusc.2014.06.170
51.
Wu
,
Y.
,
Huang
,
Q.
,
Xiao
,
C. F.
,
Chen
,
K.
,
Li
,
X.
, and
Li
,
N.
,
2014
, “
Study on the Effects and Properties of PVDF/FEP Blend Porous Membrane
,”
Desalination
,
353
, pp.
118
124
. 10.1016/j.desal.2014.09.010
52.
Ab Rahman
,
I.
, and
Padavettan
,
V.
,
2012
, “
Synthesis of Silica Nanoparticles by Sol-Gel: Size-Dependent Properties, Surface Modification, and Applications in Silica-Polymer Nanocomposites—A Review
,”
J. Nanomater.
,
2012
, pp.
1
15
. 10.1155/2012/132424
53.
Williams
,
M. V.
,
Begg
,
E.
,
Bonville
,
L.
,
Kunz
,
H. R.
, and
Fenton
,
J. M.
,
2004
, “
Characterization of Gas Diffusion Layers for PEMFC
,”
J. Electrochem. Soc.
,
151
(
8
), pp.
A1173
A1180
. 10.1149/1.1764779
54.
Sabbah
,
A.
,
Youssef
,
A.
, and
Damman
,
P.
,
2016
, “
Superhydrophobic Surfaces Created by Elastic Instability of PDMS
,”
Appl. Sci.
,
6
(
5
), p.
152
. 10.3390/app6050152
55.
Pasaogullari
,
U.
, and
Wang
,
C. Y.
,
2004
, “
Liquid Water Transport in Gas Diffusion Layer of Polymer Electrolyte Fuel Cells
,”
J. Electrochem. Soc.
,
151
(
3
), pp.
A399
A406
. 10.1149/1.1646148
56.
Wheeler
,
A.
,
Trapp
,
G.
,
Trapp
,
O.
, and
Zare
,
R. N.
,
2004
, “
Electroosmotic Flow in a Poly(Dimethylsiloxane) Channel Does Not Depend on Percent Curing Agent
,”
Electrophoresis
,
25
(
7–8
), pp.
1120
1124
. 10.1002/elps.200305784
57.
Williams
,
D. H.
, and
Fleming
,
I.
,
1995
,
Spectroscopic Methods in Organic Chemistry
,
The McGraw-Hill Companies
,
London
.
58.
Koch
,
K.
,
Bhushan
,
B.
,
Jung
,
Y. C.
, and
Barthlott
,
W.
,
2009
, “
Fabrication of Artificial Lotus Leaves and Significance of Hierarchical Structure for Superhydrophobicity and Low Adhesion
,”
Soft Matter
,
5
(
7
), pp.
1386
1393
. 10.1039/b818940d
59.
Lim
,
C.
, and
Wang
,
C. Y.
,
2004
, “
Effects of Hydrophobic Polymer Content in GDL on Power Performance of a PEM Fuel Cell
,”
Electrochim. Acta
,
49
(
24
), pp.
4149
4156
. 10.1016/j.electacta.2004.04.009
60.
Uchida
,
M.
,
Fukuoka
,
Y.
,
Sugawara
,
Y.
,
Eda
,
N.
, and
Ohta
,
A.
,
1996
, “
Effects of Microstructure of Carbon Support in the Catalyst Layer on the Performance of Polymer-Electrolyte Fuel Cells
,”
J. Electrochem. Soc.
,
143
(
7
), pp.
2245
2252
. 10.1149/1.1836988
You do not currently have access to this content.