Abstract

For the development of sodium ion secondary batteries, performance improvement in the positive electrode is the main area of research in recent times. Enhancement in electrochemical performance of Na0.44MnO2(NMO) material as a positive electrode material for sodium ion secondary batteries plays a vital role. In this work, the NMO orthorhombic compound was prepared through sol–gel auto combustion process and characterized. Its electrochemical properties are investigated and discussed. The material displays a discharge capacity of about 102.5 mAh/g at a low current rate (C/20), which decreases to 36.75 mAh/g at a relatively higher rate (2C). The capacity retention at C/10 after 50 cycles is 85.7%. The evaluation of Na-ion diffusion coefficients (DNa+) in NMO is accomplished by potentiostatic intermittent titration technique (PITT) test and galvanostatic intermittent titration technique (GITT) test. The obtained values for the Na-ion diffusivity are ranging between 10−14 and 10−15 cm2 s−1.

References

References
1.
Lu
,
Z.
, and
Dahn
,
J. R.
,
2001
, “
In Situ X-Ray Diffraction Study of P-Na2/3[Ni1/3Mn2/3]O2
,”
J. Electrochem. Soc.
,
148
(
11
), pp.
A1225
A1229
. 10.1149/1.1407247
2.
Moreau
,
P.
,
Guyomard
,
D.
,
Gaubicher
,
J.
, and
Boucher
,
F.
,
2010
, “
Structure and Stability of Sodium Intercalated Phases in Olivine FePO4
,”
Chem. Mater.
,
22
(
14
), pp.
4126
4128
. 10.1021/cm101377h
3.
Plashnitsa
,
L. S.
,
Kobayashi
,
E.
,
Noguchi
,
Y.
,
Okada
,
S.
, and
Yamaki
,
J.-I.
,
2010
, “
Electrical Conductivity and Electrochemical Characteristics of Na3V2(PO4)3-Based NASICON-Type Materials
,”
J. Electrochem. Soc.
,
157
(
4
), pp.
A536
A543
. 10.1149/1.3298903
4.
Recham
,
N.
,
Chotard
,
J. N.
,
Dupont
,
L.
,
Djellab
,
K.
,
Armand
,
M.
, and
Tarascon
,
J. M.
,
2009
, “
Ionothermal Synthesis of Sodium-Based Fluorophosphate Cathode Materials
,”
J. Electrochem. Soc.
,
156
(
12
), pp.
A993
A999
. 10.1149/1.3236480
5.
Wessells
,
C. D.
,
Huggins
,
R. A.
, and
Cui
,
Y.
,
2011
, “
Copper Hexacyanoferrate Battery Electrodes With Long Cycle Life and High Power
,”
Nat. Commun.
,
2
(
1
), pp.
550
554
. 10.1038/ncomms1563
6.
Wessells
,
C. D.
,
Peddada
,
S. V.
,
Huggins
,
R. A.
, and
Cui
,
Y.
,
2011
, “
Nickel Hexacyanoferrate Nanoparticle Electrodes for Aqueous Sodium and Potassium Ion Batteries
,”
Nano Lett.
,
11
(
12
), pp.
5421
5425
. 10.1021/nl203193q
7.
Yuan
,
D.
,
He
,
W.
,
Pei
,
F.
,
Wu
,
F.
,
Wu
,
Y.
,
Qian
,
J.
,
Cao
,
Y.
,
Ai
,
X.
, and
Yang
,
H.
,
2013
, “
Synthesis and Electrochemical Behaviors of Layered Na0.67[Mn0.65Co0.2Ni0.15]O2 Microflakes as a Stable Cathode Material for Sodium-Ion Batteries
,”
J. Mater. Chem. A
,
1
(
12
), pp.
3895
3899
. 10.1039/c3ta01430d
8.
Xu
,
J.
,
Lee
,
D. H.
,
Clement
,
R. J.
,
Yu
,
X.
,
Leskes
,
M.
,
Pell
,
A. J.
,
Pintacuda
,
G.
,
Yang
,
X.
,
Grey
,
C. P.
, and
Meng
,
Y. S.
,
2014
, “
Exploring the Working Mechanism of Li+ in O3-Type NaLi0.1Ni0.35Mn0.55O2 Cathode Materials for Rechargeable Na-Ion Batteries
,”
Chem. Mater.
,
26
(
2
), pp.
1260
1269
. 10.1021/cm403855t
9.
Yoshida
,
H.
,
Yabuuchi
,
N.
,
Kubota
,
K.
,
Ikeuchi
,
I.
,
Garsuch
,
A.
,
Schulz-Dobrick
,
M.
, and
Komaba
,
S.
,
2014
, “
P2-Type Na2/3Ni1/3Mn2/3−xTixO2 as a New Positive Electrode for Higher Energy Na-Ion Batteries
,”
Chem. Commun.
,
50
(
28
), pp.
3677
3680
. 10.1039/C3CC49856E
10.
Zhu
,
H.
,
Lee
,
K. T.
,
Hitz
,
G. T.
,
Han
,
X.
,
Li
,
Y.
,
Wan
,
J.
,
Lacey
,
S.
,
Cresce
,
A. V. W.
,
Xu
,
K.
,
Wachsman
,
E.
, and
Hu
,
L.
,
2014
, “
Free-Standing Na2/3Fe1/2Mn1/2O2@Graphene Film for a Sodium-Ion Battery Cathode
,”
ACS Appl. Mat. Interfaces
,
6
(
6
), pp.
4242
4247
. 10.1021/am405970s
11.
Li
,
Y.
, and
Wu
,
Y.
,
2019
, “
Formation of Na0.44MnO2 Nanowires via Stress-Induced Splitting of Birnessite Nanosheets
,”
Nano Res.
,
2
(
1
), pp.
54
60
. 10.1007/s12274-009-9003-1
12.
Hosono
,
E.
,
Matsuda
,
H.
,
Honma
,
I.
,
Fujihara
,
S.
,
Ichihara
,
M.
, and
Zhou
,
H.
,
2008
, “
Synthesis of Single Crystalline Electro-Conductive Na0.44MnO2 Nanowires With High Aspect Ratio for the Fast Charge-Discharge Li-Ion Battery
,”
J. Power Sources
,
182
(
1
), pp.
349
352
. 10.1016/j.jpowsour.2008.03.067
13.
Sauvage
,
F.
,
Laffont
,
L.
,
Tarascon
,
J. M.
, and
Baudrin
,
E.
,
2007
, “
Study of the Insertion/Deinsertion Mechanism of Sodium Into Na0.44MnO2
,”
Inorg. Chem.
,
46
(
8
), pp.
3289
3294
. 10.1021/ic0700250
14.
Doeff
,
M. M.
,
Richardson
,
T. J.
,
Hollingsworth
,
J.
,
Yuan
,
C.-W.
, and
Gonzales
,
M.
,
2002
, “
Synthesis and Characterization of a Copper-Substituted Manganese Oxide With the Na0.44MnO2 Structure
,”
J. Power Sources
,
112
(
1
), pp.
294
297
. 10.1016/S0378-7753(02)00449-4
15.
Cao
,
Y.
,
Xiao
,
L.
,
Wang
,
W.
,
Choi
,
D.
,
Nie
,
Z.
,
Yu
,
J.
,
Saraf
,
L. V.
,
Yang
,
Z.
, and
Liu
,
J.
,
2011
, “
Reversible Sodium Ion Insertion in Single Crystalline Manganese Oxide Nanowires With Long Cycle Life
,”
Adv. Mater.
,
23
(
28
), pp.
3155
3160
. 10.1002/adma.201100904
16.
Doeff
,
M. M.
,
Richardson
,
T. J.
, and
Kepley
,
L.
,
1996
, “
Lithium Insertion Processes of Orthorhombic NaxMnO2-Based Electrode Materials
,”
J. Electrochem. Soc.
,
143
(
8
), pp.
2507
2516
. 10.1149/1.1837039
17.
Doeff
,
M. M.
,
Peng
,
M. Y.
,
Ma
,
Y.
, and
De Jonghe
,
L. C.
,
1994
, “
Orthorhombic NaxMnO2 as a Cathode Material for Secondary Sodium and Lithium Polymer Batteries
,”
J. Electrochem. Soc.
,
141
(
11
), pp.
L145
L147
. 10.1149/1.2059323
18.
Hosono
,
E.
,
Saito
,
T.
,
Hoshino
,
J.
,
Okubo
,
M.
,
Saito
,
Y.
,
Nishio-Hamane
,
D.
,
Kudo
,
T.
, and
Zhou
,
H.
,
2012
, “
High Power Na-Ion Rechargeable Battery With Single-Crystalline Na0.44MnO2 Nanowire Electrode
,”
J. Power Sources
,
217
(
11
), pp.
43
46
. 10.1016/j.jpowsour.2012.05.100
19.
Zhou
,
X.
,
Guduru
,
R. K.
, and
Mohanty
,
P.
,
2013
, “
Synthesis and Characterization of Na0.44MnO2 From Solution Precursors
,”
J. Mater. Chem. A
,
1
(
8
), pp.
2757
2761
. 10.1039/c3ta01134h
20.
Ma
,
R.
,
Jiao
,
H.
,
Zhu
,
H.
, and
Jiao
,
S.
,
2016
, “
Ultra-Long Nanorods of Single-Crystalline Na0.44MnO2 as Cathode Materials for Sodium-Ion Batteries
,”
Int. J. Electrochem. Sci.
,
11
(
1
), pp.
7242
7253
. 10.20964/2016.08.68
21.
Liu
,
Q.
,
Hu
,
Z.
,
Chen
,
M.
,
Gu
,
Q.
,
Dou
,
Y.
,
Sun
,
Z.
,
Chou
,
S.
, and
Dou
,
S. X.
,
2017
, “
Multiangular Rod-Shaped Na0.44MnO2 as Cathode Materials With High Rate and Long Life for Sodium-Ion Batteries
,”
ACS Appl. Mater. Interfaces
,
9
(
4
), pp.
3644
3652
. 10.1021/acsami.6b13830
22.
Levi
,
M. D.
, and
Aurbach
,
D.
,
1997
, “
Diffusion Coefficients of Lithium Ions During Intercalation Into Graphite Derived From the Simultaneous Measurements and Modeling of Electrochemical Impedance and Potentiostatic Intermittent Titration Characteristics of Thin Graphite Electrodes
,”
J. Phys. Chem. B
,
101
(
23
), pp.
4641
4647
. 10.1021/jp9701911
23.
Aurbach
,
D.
,
Gnanaraj
,
J. S.
,
Levi
,
M. D.
,
Levi
,
E. A.
,
Fischer
,
J. E.
, and
Claye
,
A.
,
2001
, “
On the Correlation Among Surface Chemistry, 3D Structure, Morphology, Electrochemical and Impedance Behavior of Various Lithiated Carbon Electrodes
,”
J. Power Sources
,
97–98
(
1
), pp.
92
96
. 10.1016/S0378-7753(01)00594-8
24.
Kruk
,
I.
,
Zajdel
,
P.
,
van Beek
,
W.
,
Bakaimi
,
I.
,
Lappas
,
A.
,
Stock
,
C.
, and
Green
,
M. A.
,
2011
, “
Coupled Commensurate Cation and Charge Modulation in the Tunneled Structure, Na0.40(2)MnO2
,”
J. Am. Chem. Soc.
,
133
(
35
), pp.
13950
13956
. 10.1021/ja109707q
25.
Zhao
,
L.
,
Ni
,
J.
,
Wang
,
H.
, and
Gao
,
L.
,
2013
, “
Na0.44MnO2–CNT Electrodes for Non-Aqueous Sodium Batteries
,”
RSC Adv.
,
3
(
18
), pp.
6650
6655
. 10.1039/c3ra23032e
26.
Kim
,
D. J.
,
Ponraj
,
R.
,
Kannan
,
A. G.
,
Lee
,
H.-W.
,
Fathi
,
R.
,
Ruffo
,
R.
,
Mari
,
C. M.
, and
Kim
,
D. K.
,
2013
, “
Diffusion Behavior of Sodium Ions in Na0.44MnO2 in Aqueous and Non-Aqueous Electrolytes
,”
J. Power Sources
,
244
(
15
), pp.
758
763
. 10.1016/j.jpowsour.2013.02.090
27.
Wen
,
C. J.
,
Boukamp
,
B. A.
,
Huggins
,
R. A.
, and
Weppner
,
W.
,
1979
, “
Thermodynamic and Mass Transport Properties of LiAl
,”
J. Electrochem. Soc.
,
126
(
12
), pp.
2258
2266
. 10.1149/1.2128939
28.
Markevich
,
E.
,
Levi
,
M. D.
, and
Aurbach
,
D.
,
2005
, “
Comparison Between Potentiostatic and Galvanostatic Intermittent Titration Techniques for Determination of Chemical Diffusion Coefficients in Ion-Insertion Electrodes
,”
J. Electroanal. Chem.
,
580
(
2
), pp.
231
237
. 10.1016/j.jelechem.2005.03.030
You do not currently have access to this content.