Abstract

In a previous numerical study on heat and mass transfer in air-cooled proton exchange membrane fuel cells, it was found that the performance is limited by heat transfer to the cathode side air stream that serves as a coolant, and it was proposed to place a turbulence grid before the cathode inlet in order to induce a mixing effect to the air and thereby improve the heat transfer and ultimately increase the limiting current and maximum power density. The current work summarizes experiments with different turbulence grids which varied in terms of their pore size, grid thickness, rib width, angle of the pores, and the distance between the grid and the cathode inlet. For all grids tested in this study, the limiting current density of a Ballard Mark 1020 ACS stack was increased by 20%. The single most important parameter was the distance between the turbulence grid and the cathode inlet, and it should be within 5 mm. For the best grid tested, the fuel cell stack voltage and thus the efficiency were increased by up to 20%. The power density was increased by more than 30% and further improvements are believed to be possible.

References

References
1.
Belmonte
,
N.
,
Staulo
,
S.
,
Fiorot
,
S.
,
Luetto
,
C.
,
Rizzi
,
P.
, and
Baricco
,
M.
,
2018
, “
Fuel Cell Powered Octocopter for Inspection of Mobile Cranes: Design, Cost Analysis and Environmental Impacts
,”
Appl. Energy
,
215
, pp.
556
565
. 10.1016/j.apenergy.2018.02.072
2.
Zhu
,
W. H.
,
Payne
,
R. U.
,
Cahela
,
D. R.
, and
Tatarchuk
,
B. J.
,
2004
, “
Uniformity Analysis at MEA and Stack Levels for a Nexa PEM Fuel Cell System
,”
J. Power Sources
,
128
(
2
), pp.
231
238
. 10.1016/j.jpowsour.2003.09.074
3.
del Real
,
A. J.
,
Arce
,
A.
, and
Bordons
,
C.
,
2007
, “
Development and Experimental Validation of a PEM Fuel Cell Dynamic Model
,”
J. Power Sources
,
173
(
1
), pp.
310
324
. 10.1016/j.jpowsour.2007.04.066
4.
Larminie
,
L.
,
2003
,
A Dicks, Fuel Cell Systems Explained
,
2nd
ed.,
Wiley
.
5.
Jeong
,
S. U.
,
Cho
,
E. A.
,
Kim
,
H.-
,
Lim
,
T.-
,
Oh
,
I.-
, and
Kim
,
S. H.
,
2006
, “
A Study on Cathode Structure and Water Transport in Air-Breathing PEM Fuel Cells
,”
J. Power Sources
,
159
(
2
), pp.
1089
1094
. 10.1016/j.jpowsour.2005.12.046
6.
Al Shakhshir
,
S.
, and
Berning
,
T.
,
2016
, “
Employing Hot Wire Anemometry to Directly Measure the Water Balance of a Commercial Proton Exchange Membrane Fuel Cell Stack
,”
SAE Int. J. Altern. Powertrains
,
5
(
1
), pp.
183
188
. 10.4271/2016-01-1191
7.
Adzakpa
,
K. P.
,
Ramousse
,
J.
,
Dube
,
Y.
,
Akremi
,
H.
,
Agbossou
,
K.
,
Dostie
,
M.
,
Poulin
,
A.
, and
Fournier
,
M.
,
2008
, “
Transient air Cooling Thermal Modeling of a PEM Fuel Cell
,”
J. Power Sources
,
179
(
1
), pp.
164
176
. 10.1016/j.jpowsour.2007.12.102
8.
Tolj
,
I.
,
Abdullah
,
M.
, and
Barbir
,
F.
,
2008
, “
Thermal Behaviour of an Air Cooled PEM Fuel Cell Stack
,”
ECS Trans.
,
16
(
2
), pp.
534
542
. 10.1149/1.2981888
9.
Wu
,
J.
,
Galli
,
S.
,
Lagana
,
I.
,
Pozio
,
A.
,
Monteleone
,
G.
,
Yuan
,
X. Z.
,
Martin
,
J.
, and
Wang
,
H.
,
2009
, “
An Air-Cooled Proton Exchange Membrane Fuel Cell With Combined Oxidant and Coolant Flow
,”
J. Power Sources
,
188
(
1
), pp.
199
204
. 10.1016/j.jpowsour.2008.11.078
10.
Sasmito
,
A. P.
,
Lum
,
K. W.
,
Birgersson
,
E.
, and
Mujumdar
,
A. S.
,
2010
, “
Computational Study of Forced Air-Convection in Open-Cathode Polymer Electrolyte Fuel Cell Stacks
,”
J. Power Sources
,
195
(
17
), pp.
5550
5563
. 10.1016/j.jpowsour.2010.02.083
11.
Sasmito
,
A. P.
,
Birgersson
,
E.
, and
Mujumdar
,
A. S.
,
2011
, “
Numerical Evaluation of Various Thermal Management Strategies for Polymer Electrolyte Fuel Cell Stacks
,”
Int. J. Hydrogen Energy
,
36
(
20
), pp.
12991
13007
. 10.1016/j.ijhydene.2011.07.028
12.
Sasmito
,
A. P.
,
Birgersson
,
E.
, and
Mujumdar
,
A. S.
,
2012
, “
A Novel Flow Reversal Concept for Improved Thermal Management in Polymer Electrolyte Fuel Cell Stacks
,”
Int. J. Therm. Sci.
,
54
(
Apr.
), pp.
242
252
. 10.1016/j.ijthermalsci.2011.11.020
13.
Sasmito
,
A. P.
,
Birgersson
,
E.
,
Lum
,
K. W.
, and
Mujumdar
,
A. S.
,
2012
, “
Fan Selection and Stack Design for Open-Cathode Polymer Electrolyte Fuel Cell Stacks
,”
Renewable Energy
,
37
(
1
), pp.
325
332
. 10.1016/j.renene.2011.06.037
14.
Sasmito
,
A. P.
,
Kurnia
,
J. C.
, and
Mujumdar
,
A. S.
,
2012
, “
Numerical Evaluation of Various Gas and Coolant Channel Designs for High Performance Liquid-Cooled Proton Exchange Membrane Fuel Cells
,”
Energy
,
44
(
1
), pp.
278
291
. 10.1016/j.energy.2012.06.030
15.
Shahsavari
,
S.
,
Desouza
,
A.
,
Bahrami
,
M.
, and
Kjeang
,
E.
,
2012
, “
Thermal Analysis of Air-Cooled PEM Fuel Cells
,”
Int. J. Hydrogen Energy
,
37
(
23
), pp.
18261
18271
. 10.1016/j.ijhydene.2012.09.075
16.
Akbari
,
M.
,
Tamayol
,
A.
, and
Bahrami
,
M.
,
2012
, “
Thermal Assessment of Convective Heat Transfer in Air-Cooled PEMFC Stacks: An Experimental Study
,”
Energy Procedia
,
29
, pp.
1
11
. 10.1016/j.egypro.2012.09.002
17.
Meyer
,
Q.
,
Ashton
,
S.
,
Boillat
,
P.
,
Cochet
,
M.
,
Engebretsen
,
E.
,
Finegan
,
D. P.
,
Lu
,
X.
,
Bailey
,
J. J.
,
Mansor
,
N.
,
Abdulaziz
,
R.
, and
Taiwo
,
O. O.
,
2016
, “
Effect of Gas Diffusion Layer Properties on Water Distribution Across Air-Cooled, Open-Cathode Polymer Electrolyte Fuel Cells: A Combined Exsitu X-ray Tomography and in-Operando Neutron Imaging Study
,”
Electrochim. Acta
,
211
(
Sept.
), pp.
478
487
. 10.1016/j.electacta.2016.06.068
18.
Meyer
,
Q.
,
Ashton
,
S.
,
Jervis
,
R.
,
Finegan
,
D. P.
,
Boillat
,
P.
,
Cochet
,
M.
,
Curnick
,
O.
,
Reisch
,
T.
,
Adcock
,
P.
,
Shearing
,
P. R.
, and
Brett
,
D. J.
,
2015
, “
The Hydro-Electro-Thermal Performance of Air-Cooled, Open-Cathode Polymer Electrolyte Fuel Cells: Combined Localised Current Density, Temperature and Water Mapping
,”
Electrochim. Acta
,
180
(
Oct.
), pp.
307
315
. 10.1016/j.electacta.2015.08.106
19.
Chen
,
C.-Y.
,
Huang
,
K.-P.
,
Yan
,
W.-M.
,
Lai
,
M.-P.
, and
Yang
,
C.-C.
,
2016
, “
Development and Performance Diagnosis of a High Power Air-Cooled PEMFC Stack
,”
Int. J. Hydrogen Energy
,
41
(
27
), pp.
11784
11793
. 10.1016/j.ijhydene.2015.12.202
20.
Berning
,
T.
,
2019
, “
A Numerical Investigation of Heat and Mass Transfer In Air-Cooled Proton Exchange Membrane Fuel Cells
,”
Proceedings of the AJKFLUIDS
,
San Francisco, CA
,
July 28–Aug. 1
.
21.
Van Dyke
,
M.
,
1982
,
An Album of Fluid Motion
,
The Parabolic Press
,
Stanford, CA
.
22.
Hurst
,
D.
, and
Vassilicos
,
J. C.
,
2007
, “
Scalings and Decay of Fractal-Generated Turbulence
,”
Phys. Fluids
,
19
(
3
), pp.
1
31
. 10.1063/1.2676448
23.
Mikhailova
,
N. P.
,
Repik
,
E. U.
, and
Sosedko
,
Y. P.
,
2005
, “
Reynolds Number Effect on the Grid Turbulence Degeneration Law
,”
Fluid Dyn.
,
40
(
5
), pp.
714
725
. 10.1007/s10697-005-0109-1
24.
B Ballard-Power-Systems-Inc.
,
2008
, “
Mark1020 ACSTM Fuel Cell Stack—Product Manual and Integration Guide
,” MAN5100192-0F.
You do not currently have access to this content.