Abstract

An active carbon (AC)/AC electrochemical capacitor, taking advantage of a high-concentrated lithium trifluoromethane sulfonate (LiTFS) or lithium bis(trifluoromethane sulfonyl) imide (LiTFSI) aqueous electrolyte, was demonstrated with an extended operating voltage of 2.5 V, which is the largest value till now for aqueous carbon-based capacitors. The AC electrode is entirely capacitive in these two electrolytes and the stable potential window of the single AC electrode can reach −1.2 to 1.2 V versus the saturated calomel electrode (SCE). The performance of the AC-based capacitor is evaluated in two- and three-electrode cells using a combination of electrochemical impedance (EIS), cyclic voltammetry (CV), galvanostatic discharge-charge, and self-discharge (SD, i.e., leakage current) measurements. At 0.5-mA cm−2 charge-discharge rate, the AC/AC capacitor presents 5.5 wh kg−1 and 4.5 wh kg−1 energy density for 20 m LiTFS and LiTFSI electrolyte, respectively. The results suggest that a thorough utilization of such lithium salt aqueous electrolytes with widening electrochemical stable potential window will no doubt lead to further development of electrochemical capacitors toward superior performance.

References

1.
Choudhary
,
N.
,
Li
,
C.
,
Moore
,
J.
,
Nagaiah
,
N.
,
Zhai
,
L.
,
Jung
,
Y.
, and
Thomas
,
J.
,
2017
, “
Asymmetric Supercapacitor Electrodes and Devices
,”
Adv. Mater.
,
29
(
21
), pp.
1605336
1605365
. 10.1002/adma.201605336
2.
Talaie
,
E.
,
Bonnick
,
P.
,
Sun
,
X.
,
Pang
,
Q.
, and
Nazar
,
L. F.
,
2016
, “
Methods and Protocols for Electrochemical Energy Storage Materials Research
,”
Chem. Mater.
,
29
(
1
), pp.
90
105
. 10.1021/acs.chemmater.6b02726
3.
Salanne
,
M.
,
Rotenberg
,
B.
,
Naoi
,
K.
,
Kaneko
,
K.
,
Taberna
,
P. L.
,
Grey
,
C. P.
,
Dunn
,
B.
, and
Simon
,
P.
,
2016
, “
Efficient Storage Mechanisms for Building Better Supercapacitors
,”
Nat. Energy.
,
1
(
6
), pp.
16070
16079
. 10.1038/nenergy.2016.70
4.
Shao
,
Y.
,
El-Kady
,
M. F.
,
Sun
,
J.
,
Li
,
Y.
,
Zhang
,
Q.
,
Zhu
,
M.
,
Wang
,
H.
,
Dunn
,
B.
, and
Kaner
,
R. B.
,
2018
, “
Design and Mechanisms of Asymmetric Supercapacitors
,”
Chem. Rev.
,
118
(
18
), pp.
9233
9280
. 10.1021/acs.chemrev.8b00252
5.
Yan
,
J.
,
Wang
,
Q.
,
Wei
,
T.
, and
Fan
,
Z.
,
2014
, “
Recent Advances in Design and Fabrication of Electrochemical Supercapacitors With High Energy Densities
,”
Adv. Energy Mater.
,
4
(
4
), pp.
1300816
1300858
. 10.1002/aenm.201300816
6.
Huang
,
Y.
,
Zeng
,
Y.
,
Yu
,
M.
,
Liu
,
P.
,
Tong
,
Y.
,
Cheng
,
F.
, and
Lu
,
X.
,
2018
, “
Recent Smart Methods for Achieving High-Energy Asymmetric Supercapacitors
,”
Small Methods
,
2
(
2
), pp.
1700230
1700249
. 10.1002/smtd.201700230
7.
Cheng
,
Z.
,
Yida
,
D.
,
Wenbin
,
H.
,
Jinli
,
Q.
,
Lei
,
Z.
, and
Jiujun
,
Z.
,
2015
, “
A Review of Electrolyte Materials and Compositions for Electrochemical Supercapacitors
,”
Chem. Soc. Rev.
,
44
(
21
), pp.
7484
7539
. 10.1039/C5CS00303B
8.
Tian
,
Y.
,
Amal
,
R.
, and
Wang
,
D. W.
,
2016
, “
An Aqueous Metal-Ion Capacitor With Oxidized Carbon Nanotubes and Metallic Zinc Electrodes
”,
Front Energy Res.
,
4
(
4
), pp.
34
47
.10.3389/fenrg.2016.00034
9.
Akinwolemiwa
,
B.
,
Peng
,
C.
, and
Chen
,
G. Z.
,
2015
, “
Redox Electrolytes in Supercapacitors
,”
J. Electrochem. Soc.
,
162
(
5
), pp.
A5054
A5059
. 10.1149/2.0111505jes
10.
Puthusseri
,
D.
,
Aravindan
,
V.
,
Madhavi
,
S.
, and
Ogale
,
S.
,
2014
, “
Improving the Energy Density of Li-ion Capacitors Using Polymer-Derived Porous Carbons as Cathode
,”
Electrochim Acta.
,
130
(
4
), pp.
766
770
. 10.1016/j.electacta.2014.03.079
11.
Kim
,
H.
,
Cho
,
M. Y.
,
Kim
,
M. H.
,
Park
,
K. Y.
,
Gwon
,
H.
,
Lee
,
Y.
,
Roh
,
K. C.
, and
Kang
,
K.
,
2013
, “
A Novel High-Energy Hybrid Supercapacitor With an Anatase TiO2-Reduced Graphene Oxide Anode and an Activated Carbon Cathode
,”
Adv. Energy Mater.
,
3
(
11
), pp.
1500
1506
. 10.1002/aenm.201300467
12.
Yu
,
M.
,
Lin
,
D.
,
Feng
,
H.
,
Zeng
,
Y.
,
Tong
,
Y.
, and
Lu
,
X.
,
2017
, “
Boosting the Energy Density of Carbon-Based Aqueous Supercapacitors by Optimizing the Surface Charge
,”
Angew. Chem. Int. Ed.
,
56
(
20
), pp.
5454
5459
. 10.1002/anie.201701737
13.
Francois
,
B.
,
Volker
,
P.
,
Andrea
,
B.
, and
Elzbieta
,
F.
,
2014
, “
Carbons and Electrolytes for Advanced Supercapacitors
,”
Adv. Mater.
,
26
(
14
), pp.
2283
2283
. 10.1002/adma.201470093
14.
Hwang
,
J. Y.
,
Li
,
M.
,
El-Kady
,
M. F.
, and
Kaner
,
R. B.
,
2017
, “
Next-Generation Activated Carbon Supercapacitors: A Simple Step in Electrode Processing Leads to Remarkable Gains in Energy Density
,”
Adv Funct. Mater.
,
27
(
15
), pp.
1605745
1605754
. 10.1002/adfm.201605745
15.
Zheng
,
J. P.
, and
Jow
,
T. R.
,
1997
, “
The Effect of Salt Concentration in Electrolytes on the Maximum Energy Storage for Double Layer Capacitors
,”
J. Electrochem. Soc.
,
144
(
7
), pp.
2417
2420
. 10.1149/1.1837829
16.
Zheng
,
J. P.
,
2005
, “
Theoretical Energy Density for Electrochemical Capacitors With Intercalation Electrodes
,”
J. Electrochem. Soc.
,
152
(
9
), pp.
A1864
A1869
. 10.1149/1.1997152
17.
Brandt
,
A.
, and
Balducci
,
A.
,
2012
, “
The Influence of Pore Structure and Surface Groups on the Performance of High Voltage Electrochemical Double Layer Capacitors Containing Adiponitrile-Based Electrolyte
,”
J. Electrochem. Soc.
,
159
(
12
), pp.
A2053
A2059
. 10.1149/2.074212jes
18.
Chiba
,
K.
,
Ueda
,
T.
,
Yamaguchi
,
Y.
,
Oki
,
Y.
,
Shimodate
,
F.
, and
Naoi
,
K.
,
2011
, “
Electrolyte Systems for High Withstand Voltage and Durability I. Linear Sulfones for Electric Double-Layer Capacitors
,”
J. Electrochem. Soc.
,
158
(
12
), pp.
A872
A882
. 10.1149/1.3593001
19.
Borodin
,
O.
,
Behl
,
W.
, and
Jow
,
T. R.
,
2013
, “
Oxidative Stability and Initial Decomposition Reactions of Carbonate, Sulfone, and Alkyl Phosphate-Based Electrolytes
,”
J. Phys. Chem. C
,
117
(
17
), pp.
8661
8682
. 10.1021/jp400527c
20.
Béguin
,
F.
,
Presser
,
V.
,
Balducci
,
A.
, and
Frackowiak
,
E.
,
2014
, “
Carbons and Electrolytes for Advanced Supercapacitors
,”
Adv. Mater.
,
26
(
14
), pp.
2219
2251
. 10.1002/adma.201304137
21.
Burke
,
A.
,
2007
, “
R&D Considerations for the Performance and Application of Electrochemical Capacitors
,”
Electrochim Acta.
,
53
(
3
), pp.
1083
1091
. 10.1016/j.electacta.2007.01.011
22.
Conway
,
B. E.
,
1999
,
Electrochemical Supercapacitors
,
Plenum Publishers
,
New York
, pp.
21
31
.
23.
Demarconnay
,
L.
,
Raymundo-Piñero
,
E.
, and
Béguin
,
F.
,
2010
, “
A Symmetric Carbon/Carbon Supercapacitor Operating at 1.6 V by Using a Neutral Aqueous Solution
,”
Electrochem Commun.
,
12
(
10
), pp.
1275
1278
. 10.1016/j.elecom.2010.06.036
24.
Azov
,
V. A.
,
Egorova
,
K. S.
,
Seitkalieva
,
M. M.
,
Kashin
,
A. S.
, and
Ananikov
,
V. P.
,
2018
, “
“Solvent-in-Salt” Systems for Design of new Materials in Chemistry, Biology and Energy Research
,”
Chem. Soc. Rev.
,
47
(
4
), pp.
1250
1284
. 10.1039/C7CS00547D
25.
Zeng
,
Z.
,
Murugesan
,
V.
,
Han
,
K. S.
,
Jiang
,
X.
,
Cao
,
Y.
,
Xiao
,
L.
,
Ai
,
X.
,
Yang
,
H.
,
Zhang
,
J. G.
, and
Sushko
,
M. L.
,
2018
, “
Non-Flammable Electrolytes With High Salt-to-Solvent Ratios for Li-ion and Li-Metal Batteries
,”
Nat. Energy
,
3
(
8
), pp.
674
681
. 10.1038/s41560-018-0196-y
26.
Wang
,
J.
,
Yamada
,
Y.
,
Sodeyama
,
K.
,
Chiang
,
C. H.
,
Tateyama
,
Y.
, and
Yamada
,
A.
,
2016
, “
Superconcentrated Electrolytes for a High-Voltage Lithium-ion Battery
,”
Nat. Commun.
,
7
, pp.
12032
12040
. 10.1038/ncomms12032
27.
Smith
,
L.
, and
Dunn
,
B.
,
2015
, “
Opening the Window for Aqueous Electrolytes
,”
Science
,
350
(
6263
), p.
918
. 10.1126/science.aad5575
28.
Suo
,
L.
,
Borodin
,
O.
,
Gao
,
T.
,
Olguin
,
M.
,
Ho
,
J.
,
Fan
,
X.
,
Luo
,
C.
,
Wang
,
C.
, and
Xu
,
K.
,
2016
, “
“Water-in-Salt” Electrolyte Enables High-Voltage Aqueous Lithium-ion Chemistries
,”
ChemInform.
,
47
(
7
), p.
9
.10.1002/chin.201607009
29.
He
,
M.
,
Fic
,
K.
,
Frąckowiak
,
E.
,
Novák
,
P.
, and
Berg
,
E. J.
,
2016
, “
Influence of Aqueous Electrolyte Concentration on Parasitic Reactions in High-Voltage Electrochemical Capacitors
,”
Energy Storage Mater.
,
5
, pp.
111
115
. 10.1016/j.ensm.2016.06.001
30.
Liumin
,
S.
,
Oleg
,
B.
,
Tao
,
G.
,
Marco
,
O.
,
Janet
,
H.
,
Xiulin
,
F.
,
Chao
,
L.
,
Chunsheng
,
W.
, and
Kang
,
X.
,
2015
, “
“Water-in-Salt” Electrolyte Enables High-Voltage Aqueous Lithium-ion Chemistries
,”
Science
,
350
(
6263
), pp.
938
943
. 10.1126/science.aab1595
31.
Kowal
,
J.
,
Avaroglu
,
E.
,
Chamekh
,
F.
,
Šenfelds
,
A.
,
Thien
,
T.
,
Wijaya
,
D.
, and
Sauer
,
D. U.
,
2011
, “
Detailed Analysis of the Self-Discharge of Supercapacitors
,”
J. Power Sources
,
196
(
1
), pp.
573
579
. 10.1016/j.jpowsour.2009.12.028
32.
Pell
,
W. G.
,
Conway
,
B. E.
, and
Marincic
,
N.
,
2000
, “
Analysis of non-Uniform Charge/Discharge and Rate Effects in Porous Carbon Capacitors Containing sub-Optimal Electrolyte Concentrations
,”
J. Electroanal. Chem.
,
491
(
1
), pp.
9
21
. 10.1016/S0022-0728(00)00207-2
You do not currently have access to this content.