Abstract

The electrochemical behavior of the electrode material based on composites of polyaniline (PANI), graphite nanoplatelets (GnP), and polystyrene (PS) matrix was evaluated by applying cyclic voltammetry (CV), galvanostatic charge–discharge (GCD), and electrochemical impedance spectroscopy (EIS), for its application in electrochemical supercapacitor which is an advanced energy storing device. Composites were prepared by coating polyaniline on graphite nanoplatelets (PANI/GnP) via in situ emulsion polymerization, exhibiting specific surface area of 178.75 m2/g as compared with 72.1 m2/g of pristine GnP. The PANI/GnP was then embedded in polystyrene matrix (PANI/GnP/PS), which showed improved electrical conductivity due to an interconnected mesh of PANI/GnP as confirmed by scanning electron microscopy (SEM) morphological analysis. The formation of porous conductive network in PANI/GnP/PS with conductivity value of 8.6 × 10−3 S/cm resulted in high specific capacitance of 411.3 F/g measured at a current density of 0.5 A/g which corresponded to specific energy of 47.94 Wh/kg and specific power of 281.94 W/kg, as well as the decrease in specific capacitance was 32% even after 1600 charge–discharge cycles showing good rate performance which renders it an ideal material for electrodes in supercapacitors.

References

References
1.
Arico
,
A. S.
,
Bruce
,
P.
,
Scrosati
,
B.
,
Tarascon
,
J. M.
, and
Schalkwijk
,
W. V.
,
2005
, “
Nanostructured Materials for Advanced Energy Conversion and Storage Devices
,”
Nat. Mater.
,
4
(
5
), pp.
366
377
. 10.1038/nmat1368
2.
Kyeremateng
,
N. A.
,
Brousse
,
T.
, and
Pech
,
D.
,
2017
, “
Microsupercapacitors as Miniaturized Energy-Storage Components for On-Chip Electronics
,”
Nat. Nanotechnol.
,
12
(
1
), pp.
7
15
. 10.1038/nnano.2016.196
3.
Cheng
,
F.
,
Liang
,
J.
,
Tao
,
Z.
, and
Chen
,
J.
,
2011
, “
Functional Materials for Rechargeable Batteries
,”
Adv. Mater.
,
23
(
15
), pp.
1695
1715
. 10.1002/adma.201003587
4.
Chun
,
S. E.
,
Yoo
,
S. J.
, and
Boettcher
,
S. W.
,
2018
, “
Characterization of Electric Double-Layer Capacitor With 0.75 M NaI and 0.5 M VOSO4 Electrolyte
,”
J. Electrochem. Sci. Technol.
,
9
(
1
), pp.
20
27
. 10.33961/JECST.2018.9.1.20
5.
Zheng
,
C.
,
Zhou
,
X.
,
Cao
,
H.
,
Wang
,
G.
, and
Liu
,
Z.
,
2014
, “
Synthesis of Porous Graphene/Activated Carbon Composite With High Packing Density and Large Specific Surface Area for Supercapacitor Electrode Material
,”
J. Power Sources
,
258
, pp.
290
296
. 10.1016/j.jpowsour.2014.01.056
6.
Zhi
,
M.
,
Xiang
,
C.
,
Li
,
J.
,
Li
,
M.
, and
Wu
,
N.
,
2013
, “
Nanostructured Carbon–Metal Oxide Composite Electrodes for Supercapacitors: A Review
,”
Nanoscale
,
5
, pp.
72
88
. 10.1039/C2NR32040A
7.
Ozoemena
,
K. I.
, and
Chen
,
S.
,
2016
,
Nanomaterials in Advanced Batteries and Supercapacitors
,
Springer
,
New York
.
8.
Viculis
,
L. M.
,
Mack
,
J. J.
,
Mayer
,
O. M.
,
Hahn
,
H. T.
, and
Kaner
,
R. B.
,
2015
, “
Intercalation and Exfoliation Routes to Graphite Nanoplatelets
,”
J. Mater. Chem.
,
15
(
1
), pp.
974
978
. 10.1039/b413029d
9.
Geng
,
Y.
,
Wang
,
S. J.
, and
Kim
,
J.-K.
,
2009
, “
Preparation of Graphite Nanoplatelets and Graphene Sheets
,”
J. Colloid Interf. Sci.
,
336
(
2
), pp.
592
598
. 10.1016/j.jcis.2009.04.005
10.
Chiang
,
J.-C.
, and
MacDiarmid
,
A. G.
,
1986
, “
‘Polyaniline’: Protonic Acid Doping of the Emeraldine Form to the Metallic Regime
,”
Synth. Met.
,
13
(
1–3
), pp.
193
205
. 10.1016/0379-6779(86)90070-6
11.
Xu
,
K.
,
Li
,
S.
,
Yang
,
J.
, and
Hu
,
J.
,
2018
, “
Hierarchical Hollow MnO2 Nanofibers With Enhanced Supercapacitor Performance
,”
J. Colloid Interf. Sci.
,
513
, pp.
448
454
. 10.1016/j.jcis.2017.11.052
12.
Hao
,
G. P.
,
Lu
,
A. H.
,
Dong
,
W.
,
Jin
,
Z. Y.
,
Zhang
,
X. Q.
,
Zhang
,
J. T.
, and
Li
,
W. C.
,
2013
, “
Sandwich-Type Microporous Carbon Nanosheets for Enhanced Supercapacitor Performance
,”
Adv. Energy Mater.
,
3
(
11
), pp.
1421
1427
. 10.1002/aenm.201300383
13.
Yang
,
M.
,
Cheng
,
B.
,
Song
,
H.
, and
Chen
,
X.
,
2010
, “
Preparation and Electrochemical Performance of Polyaniline-Based Carbon Nanotubes as Electrode Material for Supercapacitor
,”
Electrochim. Acta
,
55
(
23
), pp.
7021
7027
. 10.1016/j.electacta.2010.06.077
14.
Lu
,
X.
,
Dou
,
H.
,
Yuan
,
C.
,
Yang
,
S.
,
Hao
,
L.
,
Zhang
,
F.
,
Shen
,
L.
,
Zhang
,
L.
, and
Zhang
,
X.
,
2012
, “
Polypyrrole/Carbon Nanotube Nanocomposite Enhanced the Electrochemical Capacitance of Flexible Graphene Film for Supercapacitors
,”
J. Power Sources
,
197
, pp.
319
324
. 10.1016/j.jpowsour.2011.08.112
15.
Zhang
,
R.
,
Yan
,
K.
,
Palumbo
,
A.
,
Xu
,
J.
,
Fu
,
S.
, and
Yang
,
E. H.
,
2018
, “
A Stretchable and Bendable All-Solid-State Pseudocapacitor With Dodecylbenzenesulfonate-Doped Polypyrrole-Coated Vertically Aligned Carbon Nanotubes Partially Embedded in PDMS
,”
Nanotechnology
,
30
(
9
), p.
095401
. 10.1088/1361-6528/aaf135
16.
Ginic-Markovic
,
M.
,
Matisons
,
J. G.
,
Cervini
,
R.
,
Simon
,
G. P.
, and
Fredericks
,
P. M.
,
2006
, “
Synthesis of New Polyaniline/Nanotube Composites Using Ultrasonically Initiated Emulsion Polymerization
,”
Chem. Mater.
,
18
(
26
), pp.
6258
6265
. 10.1021/cm061344c
17.
Zia
,
T. u. H.
,
Khan
,
A. N.
,
Hussain
,
M.
,
Hassan
,
I.
, and
Gul
,
I. H.
,
2016
, “
Enhancing Dielectric and Mechanical Behaviors of Hybrid Polymer Nanocomposites Based on Polystyrene, Polyaniline and Carbon Nanotubes Coated With Polyaniline
,”
Chinese J. Polym. Sci.
,
34
(
12
), pp.
1500
1509
. 10.1007/s10118-016-1867-4
18.
Zhang
,
K.
,
Zhang
,
Y.
, and
Wang
,
S.
,
2013
, “
Enhancing Thermoelectric Properties of Organic Composites Through Hierarchical Nanostructures
,”
Sci. Rep
,
3
, p.
3448
. 10.1038/srep03448
19.
Dufour
,
B.
,
Rannou
,
P.
,
Fedorko
,
P.
,
Djurado
,
D.
,
Travers
,
J. P.
, and
Pron
,
A.
,
2001
, “
Effect of Plasticizing Dopants on Spectroscopic Properties, Supramolecular Structure, and Electrical Transport in Metallic Polyaniline
,”
Chem. Mater.
,
13
(
11
), pp.
4032
4040
. 10.1021/cm001224j
20.
Wang
,
Y.
,
Iqbal
,
Z.
, and
Mitra
,
S.
,
2006
, “
Rapidly Functionalized, Water-Dispersed Carbon Nanotubes at High Concentration
,”
J. Am. Chem. Soc.
,
128
(
1
), pp.
95
99
. 10.1021/ja053003q
21.
Afzal
,
A. B.
,
Akhtar
,
M. J.
,
Nadeem
,
M.
, and
Hassan
,
M.
,
2010
, “
Dielectric and Impedance Studies of DBSA Doped Polyaniline/PVC Composites
,”
Curr. Appl. Phys.
,
10
(
2
), pp.
601
606
. 10.1016/j.cap.2009.08.004
22.
Tuinstra
,
F.
, and
Koenig
,
J. L.
,
1970
, “
Raman Spectrum of Graphite
,”
J. Chem. Phys.
,
53
(
3
), pp.
1126
1130
. 10.1063/1.1674108
23.
Liu
,
M.
,
Gan
,
L.
,
Xiong
,
W.
,
Xu
,
Z.
,
Zhu
,
D.
, and
Chen
,
L.
,
2014
, “
Development of MnO2/Porous Carbon Microspheres With a Partially Graphitic Structure for High Performance Supercapacitor Electrodes
,”
J. Mater. Chem. A
,
2
(
8
), pp.
2555
2562
. 10.1039/C3TA14445C
24.
Yao
,
P.
,
Xu
,
J.
,
Wang
,
Y.
, and
Zhu
,
C.
,
2009
, “
Preparation and Characterization of Soluble and DBSA Doped Polyaniline Grafted Multi-Walled Carbon Nanotubes Nano-Composite
,”
Mater. Sci-Mater. El.
,
20
(
9
), pp.
891
898
. 10.1007/s10854-008-9812-0
25.
Brunauer
,
S.
,
Emmett
,
P. H.
, and
Teller
,
E.
,
1938
, “
Adsorption of Gases in Multimolecular Layers
,”
J. Am. Chem. Soc.
,
60
(
2
), pp.
309
319
. 10.1021/ja01269a023
26.
Barrett
,
E. P.
,
Joyner
,
L. G.
, and
Halenda
,
P. P.
,
1951
, “
The Determination of Pore Volume and Area Distributions in Porous Substances. I. Computations From Nitrogen Isotherms
,”
J. Am. Chem. Soc.
,
73
(
1
), pp.
373
380
. 10.1021/ja01145a126
27.
Hotta
,
S.
,
Rughooputh
,
S.
, and
Heeger
,
A.
,
1987
, “
Conducting Polymer Composites of Soluble Polythiophenes in Polystyrene
,”
Synth. Met.
,
22
(
1
), pp.
79
87
. 10.1016/0379-6779(87)90573-X
28.
Jeon
,
B. H.
,
Kim
,
S.
,
Choi
,
M. H.
, and
Chung
,
I. J.
,
1999
, “
Synthesis and Characterization of Polyaniline–Polycarbonate Composites Prepared by an Emulsion Polymerization
,”
Synth. Met.
,
104
(
2
), pp.
95
100
. 10.1016/S0379-6779(99)00053-3
29.
Cortes
,
L. Q.
,
Lonjon
,
A.
,
Dantras
,
E.
, and
Lacabanne
,
C.
,
2014
, “
High-Performance Thermoplastic Composites Poly (Ether Ketone Ketone)/Silver Nanowires: Morphological, Mechanical and Electrical Properties
,”
J. Non-Cryst. Solids
,
391
, pp.
106
111
. 10.1016/j.jnoncrysol.2014.03.016
30.
Stauffer
,
D.
,
1985
,
Introduction to Percolation Theory
,
Taylor & Francis
,
London and Philadelphia
.
31.
Österholm
,
J. E.
,
Cao
,
Y.
,
Klavetter
,
F.
, and
Smith
,
P.
,
1994
, “
Emulsion Polymerization of Aniline
,”
Polymer
,
35
(
13
), pp.
2902
2906
. 10.1016/0032-3861(94)90329-8
32.
Song
,
E.
, and
Choi
,
J. W.
,
2013
, “
Conducting Polyaniline Nanowire and its Applications in Chemiresistive Sensing
,”
Nanomaterials
,
3
(
3
), pp.
498
523
. 10.3390/nano3030498
33.
Lee
,
C. W.
,
Yoon
,
S. B.
,
Kim
,
H. K.
,
Youn
,
H. C.
,
Han
,
J.
,
Roh
,
K. C.
, and
Kim
,
K. B.
,
2015
, “
A Two-Dimensional Highly Ordered Mesoporous Carbon/Graphene Nanocomposite for Electrochemical Double Layer Capacitors: Effects of Electrical and Ionic Conduction Pathways
,”
J. Mater. Chem. A
,
3
(
5
), pp.
2314
2322
. 10.1039/C4TA05863A
34.
Park
,
S. H.
,
Yoon
,
S. B.
,
Kim
,
H. K.
,
Han
,
J. T.
,
Park
,
H. W.
,
Han
,
J.
,
Yun
,
S. M.
,
Jeong
,
H. G.
,
Roh
,
K. C.
, and
Kim
,
K. B.
,
2014
, “
Spine-Like Nanostructured Carbon Interconnected by Graphene for High-Performance Supercapacitors
,”
Sci. Rep
,
4
, p.
6118
. 10.1038/srep06118
35.
Lindström
,
H.
,
Södergren
,
S.
,
Solbrand
,
A.
,
Rensmo
,
H.
,
Hjelm
,
J.
,
Hagfeldt
,
A.
, and
Lindquist
,
S. E.
,
1997
, “
Li+ Ion Insertion in TiO2 (Anatase). 2. Voltammetry on Nanoporous Films
,”
J. Phys. Chem. B
,
101
(
39
), pp.
7717
7722
. 10.1021/jp970490q
36.
Park
,
M.
,
Zhang
,
X.
,
Chung
,
M.
,
Less
,
G. B.
, and
Sastry
,
A. M.
,
2010
, “
A Review of Conduction Phenomena in Li-Ion Batteries
,”
J. Power Sources
,
195
(
24
), pp.
7904
7929
. 10.1016/j.jpowsour.2010.06.060
37.
Yang
,
I.
,
Kim
,
S. G.
,
Kwon
,
S. H.
,
Kim
,
M. S.
, and
Jung
,
J. C.
,
2017
, “
Relationships Between Pore Size and Charge Transfer Resistance of Carbon Aerogels for Organic Electric Double-Layer Capacitor Electrodes
,”
Electrochim. Acta
,
223
, pp.
21
30
. 10.1016/j.electacta.2016.11.177
38.
Li
,
L.
,
Song
,
H.
,
Zhang
,
Q.
,
Yao
,
J.
, and
Chen
,
X.
,
2009
, “
Effect of Compounding Process on the Structure and Electrochemical Properties of Ordered Mesoporous Carbon/Polyaniline Composites as Electrodes for Supercapacitors
,”
J. Power Sources
,
187
(
1
), pp.
268
274
. 10.1016/j.jpowsour.2008.10.075
39.
Mi
,
H.
,
Zhang
,
X.
,
Yang
,
S.
,
Ye
,
X.
, and
Luo
,
J.
,
2008
, “
Polyaniline Nanofibers as the Electrode Material for Supercapacitors
,”
Mater. Chem. Phys.
,
112
(
1
), pp.
127
131
. 10.1016/j.matchemphys.2008.05.022
40.
Han
,
J.
,
Lee
,
J. H.
, and
Roh
,
K. C.
,
2018
, “
Herbaceous Biomass Waste-Derived Activated Carbons for Supercapacitors
,”
J. Electrochem. Sci. Tech.
,
9
(
2
), pp.
1
6
. 10.33961/jecst.2018.9.2.157
41.
Zhou
,
Y. k.
,
He
,
B. l.
,
Zhou
,
W. j.
,
Huang
,
J.
,
Li
,
X. h.
,
Wu
,
B.
, and
Li
,
H. l.
,
2004
, “
Electrochemical Capacitance of Well-Coated Single-Walled Carbon Nanotube With Polyaniline Composites
,”
Electrochim. Acta
,
49
(
2
), pp.
257
262
. 10.1016/j.electacta.2003.08.007
42.
Lee
,
J. Y.
,
Liang
,
K.
,
An
,
K. H.
, and
Lee
,
Y. H.
,
2005
, “
Nickel Oxide/Carbon Nanotubes Nanocomposite for Electrochemical Capacitance
,”
Synth. Met.
,
150
(
2
), pp.
153
157
. 10.1016/j.synthmet.2005.01.016
43.
Hong
,
J.
,
Hwang
,
B.
,
Lee
,
J.
, and
Kim
,
K.
,
2017
, “
Effects of Cyclic Structure of Ammonium Ions on Capacitance in Electrochemical Double Layer Supercapacitors
,”
J. Electrochem. Sci. Tech.
,
8
(
1
), pp.
1
6
. 10.33961/JECST.2016.8.1.1
44.
Kim
,
H.
,
Cho
,
M. Y.
,
Kim
,
M. H.
,
Park
,
K. Y.
,
Gwon
,
H.
,
Lee
,
Y.
,
Roh
,
K. C.
, and
Kang
,
K.
,
2013
, “
A Novel High-Energy Hybrid Supercapacitor With an Anatase TiO2-Reduced Graphene Oxide Anode and an Activated Carbon Cathode
,”
Adv. Energy Mater.
,
3
(
11
), pp.
1500
1506
. 10.1002/aenm.201300467
45.
Shao
,
J.
,
Zhou
,
X.
,
Liu
,
Q.
,
Zou
,
R.
,
Li
,
W.
,
Yang
,
J.
, and
Hu
,
J.
,
2015
, “
Mechanism Analysis of the Capacitance Contributions and Ultralong Cycling-Stability of the Isomorphous MnO2@ MnO2 Core/Shell Nanostructures for Supercapacitors
,”
J. Mater. Chem. A
,
3
(
11
), pp.
6168
6176
. 10.1039/C4TA06793B
46.
Ko
,
J. M.
, and
Chung
,
I. J.
,
1995
, “
Electrochemical Behavior of Dodecylbenzenesulfonic Acid-Doped Polyaniline in Organic Electrolyte Solution
,”
Synth. Met.
,
68
(
3
), pp.
233
237
. 10.1016/0379-6779(94)02292-7
47.
Yoo
,
H. D.
,
Jang
,
J. H.
,
Ryu
,
J. H.
,
Park
,
Y.
, and
Oh
,
S. M.
,
2014
, “
Impedance Analysis of Porous Carbon Electrodes to Predict Rate Capability of Electric Double-Layer Capacitors
,”
J. Power Sources
,
267
, pp.
411
420
. 10.1016/j.jpowsour.2014.05.058
48.
Portet
,
C.
,
Taberna
,
P.
,
Simon
,
P.
, and
Laberty-Robert
,
C.
,
2004
, “
Modification of Al Current Collector Surface by Sol–Gel Deposit for Carbon–Carbon Supercapacitor Applications
,”
Electrochim. Acta
,
49
(
6
), pp.
905
912
. 10.1016/j.electacta.2003.09.043
49.
Park
,
M. S.
,
Kim
,
J.
,
Kim
,
K. J.
,
Lee
,
J. W.
,
Kim
,
J. H.
, and
Yamauchi
,
Y.
,
2015
, “
Porous Nanoarchitectures of Spinel-Type Transition Metal Oxides for Electrochemical Energy Storage Systems
,”
Phys. Chem. Chem. Phys.
,
17
(
46
), pp.
30963
30977
. 10.1039/C5CP05936D
You do not currently have access to this content.