The entire world is facing a great shortfall in the energy supply due to the high consumption rate of fossil fuel-based energy resources. Solid oxide fuel cells (SOFCs) are the best alternative energy devices, which convert hydrogen fuel directly into electricity. Alkali carbonated calcium-doped ceria electrolytes (LNK-CDC) as (Ce0.8 Ca0.2), (Ce0.7 Ca0.3), and (Ce0.6 Ca0.4) were synthesized by the co-precipitation method. With the addition of alkali carbonate, nanocomposites of ceria are well preserved after sintering at 600–700 °C. The structural and morphological properties were examined by X-ray diffraction (XRD) and scanning electron microscopy (SEM), respectively. Crystallite sizes were found in the range of 50–80 nm. The maximum ionic conductivity of LNK-CDC (Ce0.8Ca0.2) was achieved to be 0.14 S/cm at 650 °C for anion vacancy migration by the dense microstructure. The minimum activation energy was determined to be 0.23 eV. The Fourier-transform infrared spectroscopy (FTIR) spectra of the prepared materials show the absorbance of IR and their behavior. The maximum power density of symmetric fuel cells LNK-CDC sandwiched with LNCZ oxide electrodes was recorded as 0.52 W cm−2 at 650 °C in the presence of hydrogen (fuel). It is suggested that coating of the equal molar ratio of ternary alkali metals on ceria doped comparatively enhance the performance of new nanocomposite electrolyte for SOFC and other energy applications.

References

References
1.
Abbas
,
G.
,
Raza
,
R.
,
Chaudhary
,
M. A.
, and
Zhu
,
B.
,
2011
, “
Preparation and Characterization of Nanocomposite Calcium Doped Ceria Electrolyte With Alkali Carbonates (NK-CDC) for SOFC
,”
ASME J. Fuel Cell Sci. Technol.
,
8
(
4
), p.
041013
.
2.
Raza
,
R.
,
Ahmad
,
M. A.
,
Akram
,
N.
,
Saleem
,
M.
,
Akhtar
,
M. N.
,
Sherazi
,
T. A.
,
Khan
,
M. A.
,
Abbas
,
G.
,
Shakir
,
I.
,
Mohsin
,
M.
,
Alvi
,
M.
,
Javed
,
M. S.
,
Rafique
,
M. Y.
, and
Zhu
,
B.
,
2015
, “
Composite Electrolyte With Proton Conductivity for Low-Temperature Solid Oxide Fuel Cell
,”
Appl. Phys. Lett.
,
107
(
18
), p.
183903
.
3.
Natusch
,
D. F.
,
1978
, “
Potentially Carcinogenic Species Emitted to the Atmosphere by Fossil-Fueled Power Plants
,”
Environ. Health Perspect.
22
(
February
), pp.
79
90
.
4.
Souza
,
S. D.
,
Visco
,
S. L.
, and
Jonghe
,
L. C. D.
,
1997
, “
Thin-Film Solid Oxide Fuel Cell With High Performance at Low-Temperature
,”
Solid State Ionics
,
98
(
1–2
), pp.
57
61
.
5.
Eguchi
,
K.
,
Kojo
,
H.
,
Takeguchi
,
T.
,
Kikuchi
,
R.
, and
Sasaki
,
K.
,
2002
, “
Fuel Flexibility in Power Generation by Solid Oxide Fuel Cells
,”
Solid State Ionics
,
152–153
, pp.
411
416
.
6.
Singhal
,
S. C.
, and
Kendall
,
K.
,
2003
, “High Temperature Solid Oxide Fuel Cell,”
Fundamental Design and Applications
,
S. C.
Singhal
, and
K.
Kendall
, eds.,
Elsevier Limited
,
Amsterdam
.
7.
Zuo
,
C.
,
Zha
,
S.
,
Liu
,
M.
,
Hatano
,
M.
, and
Uchiyama
,
M.
,
2006
, “
Ba(Zr0.1Ce0.7Y0. 2)O3–δ as an Electrolyte for Low-Temperature Solid-Oxide Fuel Cells
,”
Adv. Mater.
,
18
(
24
), pp.
3318
3320
.
8.
Fergus
,
J. W.
,
2009
, “
Electrolytes for Solid Oxide Fuel Cells
,”
J. Power Sources
,
162
(
1
), pp.
30
40
.
9.
Jacobson
,
A. J.
,
2009
, “
Materials for Solid Oxide Fuel Cells
,”
Chem. Mater.
,
22
(
3
), pp.
660
674
.
10.
Singhal
,
S. C.
,
2000
, “
Advances in Solid Oxide Fuel Cell Technology
,”
Solid State Ionics
,
135
(
1–4
), pp.
305
313
.
11.
Zhu
,
B.
,
Li
,
S.
, and
Mellander
,
B. E.
,
2008
, “
Theoretical Approach on Ceria-Based Two-Phase Electrolytes for Low Temperature (300–600 °C) Solid Oxide Fuel Cells
,”
Electrochem. Commun.
,
10
(
2
), pp.
302
305
.
12.
Ma
,
Y.
,
Wang
,
X.
,
Li
,
S.
,
Toprak
,
M. S.
,
Zhu
,
B.
, and
Muhammad
,
M.
,
2010
, “
Samarium-Doped Ceria Nanowires: Novel Synthesis and Application in Low-Temperature Solid Oxide Fuel Cells
,”
Adv. Mater.
,
22
(
14
), pp.
1640
1644
.
13.
Tian
,
R.
,
Zhao
,
F.
,
Chen
,
F.
, and
Xia
,
C.
,
2011
, “
Sintering of Samarium-Doped Ceria Powders Prepared by a Glycine-Nitrate Process
,”
Solid State Ionics
,
192
(
1
), pp.
580
583
.
14.
Steel
,
B. C. H.
, and
Heinzel
,
A.
,
2001
, “Materials for Fuel Cell Technologies,”
Materials for Sustainable Energy: A Collection of Peer-Reviewed Research and Review Articles from Nature Publishing Group
,
V.
Dusastre
, ed.,
World Scientific Publishers
,
Singapore
, pp.
224
231
.
15.
Zhu
,
B.
,
Liu
,
X.
,
Sun
,
M.
,
Ji
,
S.
, and
Sun
,
J.
,
2003
, “
Calcium Doped Ceria-Based Materials for Cost-Effective Intermediate Temperature Solid Oxide Fuel Cells
,”
Solid State Sci.
,
5
(
8
), pp.
1127
1134
.
16.
Mumtaz
,
S.
,
Ahmad
,
M. A.
,
Raza
,
R.
,
Arshad
,
M. S.
,
Ahmad
,
B.
,
Ashiq
,
M. N.
, and
Abbas
,
G.
,
2017
, “
Nano Grained Sr and Zr Co-Doped BaCeO3 Electrolyte for Intermediate Temperature Solid Oxide Fuel Cells
,”
Ceram. Int.
,
43
(
16
), pp.
14354
14360
.
17.
Liu
,
X.
,
Dong
,
W.
,
Xia
,
C.
,
Huang
,
Q.
,
Cai
,
Y.
,
Wei
,
L.
,
Wu
,
G.
,
Wang
,
X.
,
Tong
,
Y.
,
Qiao
,
Z.
,
Meng
,
Y.
,
Mushtaq
,
M. N.
, and
Wang
,
B.
,
2018
, “
Study on Charge Transportation in the Layer-Structured Oxide Composite of SOFCs
,”
Int. J. Hydrogen Energy
,
43
(
28
), pp.
12773
12781
.
18.
Wu
,
H.
,
Li
,
Z.
,
Ji
,
D.
,
Liu
,
Y.
,
Yi
,
G.
,
Yuan
,
D.
,
Wang
,
B.
, and
Zhang
,
Z.
,
2017
, “
Effect of Molten Carbonate Composition on the Generation of Carbon Material
,”
RSC Adv.
7
(
14
), pp.
8467
.
19.
Abbas
,
G.
,
Raza
,
R.
,
Ashfaq
,
M. M. A.
,
Chaudhry
,
M. A.
,
Khan
,
M. A.
,
Ahmad
,
I.
, and
Zhu
,
B.
,
2014
, “
Electro-Chemical Study of Nano-Structured Electrode for Low Temperature Solid Oxide Fuel Cell (LTSOFC)
,”
Int. J. Energy Res.
,
38
(
4
), pp.
518
523
.
20.
Ali
,
A.
,
Rafique
,
A.
,
Ullah
,
M. K.
,
Abbas
,
G.
,
Khan
,
M. A.
,
Ahmad
,
M. A.
, and
Raza
,
R.
,
2018
, “
Effect of Alkali Carbonates (Single, Binary, and Ternary) on Doped Ceria: A Composite Electrolyte for Low-Temperature Solid Oxide Fuel Cells
,”
ACS Appl. Mater. Interfaces
,
10
(
1
), pp.
806
818
.
21.
Arshad
,
M. S.
,
Raza
,
R.
,
Ahmad
,
M. A.
,
Abbas
,
G.
,
Ali
,
A.
,
Rafique
,
A.
,
Ullah
,
M. K.
,
Rauf
,
S.
,
Asghar
,
M. I.
,
Mushtaq
,
M. N.
,
Atiq
,
S.
, and
Naseem
,
S.
,
2018
, “
An Efficient Sm and Ge Co-Doped Ceria Nanocomposite Electrolyte for Low Temperature Solid Oxide Fuel Cells
,”
Ceram. Int.
,
44
(
1
), pp.
170
174
.
22.
Xia
,
C.
,
Li
,
Y.
,
Ye
,
T.
,
Liu
,
Q.
,
Zhao
,
Y.
,
Jia
,
L.
, and
Li
,
Y.
,
2009
, “
A High Performance Composite Ionic Conducting Electrolyte for Intermediate Temperature Fuel Cell and Evidence for Ternary Ionic Conduction
,”
J. Power Sources
,
188
(
1
), pp.
156
162
.
23.
Zhang
,
L.
,
Lan
,
R.
,
Xu
,
X.
,
Taoa
,
S.
,
Jiang
,
Y.
, and
Kraft
,
A.
,
2009
, “
A High Performance Intermediate Temperature Fuel Cell Based on a Thick Oxide–Carbonate Electrolyte
,”
J. Power Sources
,
194
(
2
), pp.
967
971
.
24.
Ma
,
Y.
,
Wang
,
X.
,
Khalifa
,
A. H.
,
Zhu
,
B.
, and
Muhammed
,
M.
,
2012
, “
Enhanced Ionic Conductivity in Calcium Doped Ceria—Carbonate Electrolyte: A Composite Effect
,”
Int. J. Hydrogen Energy
,
37
(
24
), pp.
19401
19406
.
25.
Raza
,
R.
,
Wang
,
X.
,
Ma
,
Y.
, and
Zhu
,
B.
,
2010
, “
Study on Calcium and Samarium Co-Doped Ceria Based Nanocomposite Electrolytes
,”
J. Power Sources
,
195
(
19
), pp.
6491
6495
.
26.
Huang
,
J.
,
Mao
,
Z.
,
Liu
,
Z.
, and
Wang
,
C.
,
2007
, “
Development of Novel Low-Temperature SOFCs With Co-Ionic Conducting SDC-Carbonate Composite Electrolytes
,”
Electrochem. Commun.
9
(
10
), pp.
2601
2605
.
27.
Yi
,
F.
,
Chen
,
H.
, and
Li
,
H.
,
2014
, “
Performance of Solid Oxide Fuel Cell With La and Cr Co-Doped SrTiO3 as Anode
,”
ASME J. Fuel Cell Sci. Technol.
,
11
(
3
), p.
0310061
.
28.
Zuo
,
N.
,
Zhang
,
M.
,
Mao
,
Z.
,
Gao
,
Z.
, and
Xie
,
F.
,
2011
, “
Fabrication and Characterization of Composite Electrolyte for Intermediate-Temperature SOFC
,”
J. Europ. Ceram. Soc.
,
31
(
16
), pp.
3103
3107
.
29.
Xua
,
N.
,
Zhua
,
T.
,
Yanga
,
Z.
, and
Han
,
M.
,
2017
, “
Fabrication and Optimization of La0.4Sr0.6Co0.2Fe0.7Nb0.1O3-δ Electrode for Symmetric Solid Oxide Fuel Cell With Zirconia Based Electrolyte
,”
J. Mater. Sci. Technol.
,
33
(
11
), pp.
1329
1333
.
You do not currently have access to this content.