Abstract

The energy, exergy, and economic aspects are analyzed of a cycle consisting of a polymer fuel cell, a burner, a reformer, and a heat exchanger. Water is used for cooling the fuel cell, and the heated water is used for domestic consumption. The exergy and energy efficiencies of the cycle are calculated, and the effects of various cycle parameters on the exergy and energy efficiencies are investigated. To maximize the exergy efficiency while minimizing the cost of electricity generation by the fuel cell, the particle swarm optimization (PSO) algorithm is utilized. The results show that increasing the cooling water flow rate has the greatest effect on increasing the energy efficiency of the cycle, while increasing the burner temperature has the greatest effect on increasing the exergy efficiency of the cycle. Moreover, it is shown via multi-objective optimization of the proposed cycle that the exergy efficiency of the cycle increases by 31% and the cost of electricity generation decreases by 18% by applying optimized parameters.

References

References
1.
Aliehyaei
,
M.
,
Atabi
,
F.
,
Khorshidvand
,
M.
, and
Rosen
,
M.
,
2015
, “
Exergy, Economic and Environmental Analysis for Simple and Combined Heat and Power IC Engines
,”
Sustainability
,
7
(
4
), pp.
4411
4424
. 10.3390/su7044411
2.
Ehyaei
,
M.
,
Ahmadi
,
P.
,
Atabi
,
F.
,
Heibati
,
M.
, and
Khorshidvand
,
M.
,
2012
, “
Feasibility Study of Applying Internal Combustion Engines in Residential Buildings by Exergy, Economic and Environmental Analysis
,”
Energy Build.
,
55
, pp.
405
413
. 10.1016/j.enbuild.2012.09.002
3.
Mohammadnezami
,
M. H.
,
Ehyaei
,
M. A.
,
Rosen
,
M. A.
, and
Ahmadi
,
M. H.
,
2015
, “
Meeting the Electrical Energy Needs of a Residential Building With a Wind-Photovoltaic Hybrid System
,”
Sustainability
,
7
(
3
), pp.
2554
2569
. 10.3390/su7032554
4.
Yousefi
,
M.
, and
Ehyaei
,
M. A.
,
2019
, “
Feasibility Study of Using Organic Rankine and Reciprocating Engine Systems for Supplying Demand Loads of a Residential Building
,”
Adv. Build. Energy Res.
,
13
(
1
), pp.
32
48
. 10.1080/17512549.2017.1354779
5.
Mozafari
,
A.
, and
Ehyaei
,
M. A.
,
2012
, “
Effects of Regeneration Heat Exchanger on Entropy, Electricity Cost, and Environmental Pollution Produced by Micro Gas Turbine System
,”
Int. J. Green Energy
,
9
(
1
), pp.
51
70
. 10.1080/15435075.2011.617021
6.
Yazdi
,
B. A.
,
Yazdi
,
B. A.
,
Ehyaei
,
M. A.
, and
Ahmadi
,
A.
,
2015
, “
Optimization of Micro Combined Heat and Power Gas Turbine by Genetic Algorithm
,”
Therm. Sci.
,
19
(
1
), pp.
207
218
. 10.2298/TSCI121218141Y
7.
Choudhury
,
A.
,
Chandra
,
H.
, and
Arora
,
A.
,
2013
, “
Application of Solid Oxide Fuel Cell Technology for Power Generation—A Review
,”
Renew. Sustain. Energy Rev.
,
20
, pp.
430
442
. 10.1016/j.rser.2012.11.031
8.
Arshad
,
A.
,
Ali
,
H. M.
,
Habib
,
A.
,
Bashir
,
M. A.
,
Jabbal
,
M.
, and
Yan
,
Y.
,
2019
, “
Energy and Exergy Analysis of Fuel Cells: A Review
,”
Therm. Sci. Eng. Prog.
,
9
, pp.
308
321
. 10.1016/j.tsep.2018.12.008
9.
Mojaver
,
P.
,
Khalilarya
,
S.
, and
Chitsaz
,
A.
,
2019
, “
Multi-Objective Optimization Using Response Surface Methodology and Exergy Analysis of a Novel Integrated Biomass Gasification, Solid Oxide Fuel Cell and High-Temperature Sodium Heat Pipe System
,”
Appl. Therm. Eng.
,
156
, pp.
627
639
. 10.1016/j.applthermaleng.2019.04.104
10.
Aloui
,
T.
, and
Halouani
,
K.
,
2007
, “
Analytical Modeling of Polarizations in a Solid Oxide Fuel Cell Using Biomass Syngas Product as Fuel
,”
Appl. Therm. Eng.
,
27
(
4
), pp.
731
737
. 10.1016/j.applthermaleng.2006.10.011
11.
Pan
,
Z. F.
,
Chen
,
R.
,
An
,
L.
, and
Li
,
Y. S.
,
2017
, “
Alkaline Anion Exchange Membrane Fuel Cells for Cogeneration of Electricity and Valuable Chemicals
,”
J. Power Sources
,
365
, pp.
430
445
. 10.1016/j.jpowsour.2017.09.013
12.
Sevencan
,
S.
,
Guan
,
T.
,
Lindbergh
,
G.
,
Lagergren
,
C.
,
Alvfors
,
P.
, and
Ridell
,
B.
,
2013
, “
Fuel Cell Based Cogeneration: Comparison of Electricity Production Cost for Swedish Conditions
,”
Int. J. Hydrogen Energy
,
38
(
10
), pp.
3858
3864
. 10.1016/j.ijhydene.2013.01.178
13.
Pashaei-Didani
,
H.
,
Nojavan
,
S.
,
Nourollahi
,
R.
, and
Zare
,
K.
,
2019
, “
Optimal Economic-Emission Performance of Fuel Cell/CHP/Storage Based Microgrid
,”
Int. J. Hydrogen Energy
,
44
(
13
), pp.
6896
6908
. 10.1016/j.ijhydene.2019.01.201
14.
Pääkkönen
,
A.
, and
Joronen
,
T.
,
2019
, “
Revisiting the Feasibility of Biomass-Fueled CHP in Future Energy Systems—Case Study of the Åland Islands
,”
Energy Convers. Manage.
,
188
, pp.
66
75
. 10.1016/j.enconman.2019.03.057
15.
Ehyaei
,
M. A.
, and
Rosen
,
M. A.
,
2019
, “
Optimization of a Triple Cycle Based on a Solid Oxide Fuel Cell and Gas and Steam Cycles With a Multiobjective Genetic Algorithm and Energy, Exergy and Economic Analyses
,”
Energy Convers. Manage.
,
180
, pp.
689
708
. 10.1016/j.enconman.2018.11.023
16.
Springer
,
T. E.
,
Zawodzinski
,
T.
, and
Gottesfeld
,
S.
,
1991
, “
Polymer Electrolyte Fuel Cell Model
,”
J. Electrochem. Soc.
,
138
(
8
), pp.
2334
2342
. 10.1149/1.2085971
17.
Özgür
,
T.
, and
Yakaryilmaz
,
A. C.
,
2018
, “
Thermodynamic Analysis of a Proton Exchange Membrane Fuel Cell
,”
Int. J. Hydrogen Energy
,
43
(
38
), pp.
18007
18013
. 10.1016/j.ijhydene.2018.06.152
18.
Nazari-Heris
,
M.
,
Abapour
,
S.
, and
Mohammadi-Ivatloo
,
B.
,
2017
, “
Optimal Economic Dispatch of FC-CHP Based Heat and Power Micro-Grids
,”
Appl. Therm. Eng.
,
114
, pp.
756
769
. 10.1016/j.applthermaleng.2016.12.016
19.
Di Marcoberardino
,
G.
,
Manzolini
,
G.
,
Guignard
,
C.
, and
Magaud
,
V.
,
2018
, “
Optimization of a Micro-CHP System Based on Polymer Electrolyte Membrane Fuel Cell and Membrane Reactor From Economic and Life Cycle Assessment Point of View
,”
Chem. Eng. Process.
,
131
, pp.
70
83
. 10.1016/j.cep.2018.06.003
20.
Mozafari
,
A.
,
Ahmadi
,
A.
, and
Ehyaei
,
M.
,
2010
, “
Optimisation of Micro Gas Turbine by Exergy, Economic and Environmental (3E) Analysis
,”
Int. J. Exergy
,
7
(
1
), p.
1
. 10.1504/IJEX.2010.029611
21.
Sarabchi
,
N.
,
Mahmoudi
,
S. M. S.
,
Yari
,
M.
, and
Farzi
,
A.
,
2019
, “
Exergoeconomic Analysis and Optimization of a Novel Hybrid Cogeneration System: High-Temperature Proton Exchange Membrane Fuel Cell/Kalina Cycle, Driven by Solar Energy
,”
Energy Convers. Manage.
,
190
, pp.
14
33
. 10.1016/j.enconman.2019.03.037
22.
Nalbant
,
Y.
,
Colpan
,
C. O.
, and
Devrim
,
Y.
,
2019
, “
Energy and Exergy Performance Assessments of a High Temperature-Proton Exchange Membrane Fuel Cell Based Integrated Cogeneration System
,”
Int. J. Hydrogen Energy.
, in press. 10.1016/j.ijhydene.2019.01.252
23.
Habibollahzade
,
A.
,
Gholamian
,
E.
,
Houshfar
,
E.
, and
Behzadi
,
A.
,
2018
, “
Multi-Objective Optimization of Biomass-Based Solid Oxide Fuel Cell Integrated With Stirling Engine and Electrolyzer
,”
Energy Convers. Manage.
,
171
, pp.
1116
1133
. 10.1016/j.enconman.2018.06.061
24.
Habibollahzade
,
A.
,
Gholamian
,
E.
, and
Behzadi
,
A.
,
2019
, “
Multi-Objective Optimization and Comparative Performance Analysis of Hybrid Biomass-Based Solid Oxide Fuel Cell/Solid Oxide Electrolyzer Cell/Gas Turbine Using Different Gasification Agents
,”
Appl. Energy
,
233–234
, pp.
985
1002
. 10.1016/j.apenergy.2018.10.075
25.
Devan
,
S.
,
Subramanian
,
V. R.
, and
White
,
R. E.
,
2004
, “
Analytical Solution for the Impedance of a Porous Electrode
,”
J. Electrochem. Soc.
,
151
(
6
), pp.
A905
A913
. 10.1149/1.1739218
26.
Saidi
,
M.
,
Abbassi
,
A.
, and
Ehyaei
,
M.
,
2005
, “
Exergetic Optimization of a PEM Fuel Cell for Domestic Hot Water Heater
,”
J. Fuel Cell Sci. Technol.
,
2
(
4
), pp.
284
289
. 10.1115/1.2041672
27.
Saidi
,
M.
,
Ehyaei
,
M.
, and
Abbasi
,
A.
,
2005
, “
Optimization of a Combined Heat and Power PEFC by Exergy Analysis
,”
J. Power Sources
,
143
(
1–2
), pp.
179
184
. 10.1016/j.jpowsour.2004.11.061
28.
Ju
,
H.
,
Meng
,
H.
, and
Wang
,
C.-Y.
,
2005
, “
A Single-Phase, Non-Isothermal Model for PEM Fuel Cells
,”
Int. J. Heat Mass Transfer
,
48
(
7
), pp.
1303
1315
. 10.1016/j.ijheatmasstransfer.2004.10.004
29.
Yazdi
,
M. Z.
, and
Kalbasi
,
M.
,
2010
, “
A Novel Analytical Analysis of PEM Fuel Cell
,”
Energy Convers. Manage.
,
51
(
2
), pp.
241
246
. 10.1016/j.enconman.2009.08.023
30.
Ashari
,
G.
,
Ehyaei
,
M.
,
Mozafari
,
A.
,
Atabi
,
F.
,
Hajidavalloo
,
E.
, and
Shalbaf
,
S.
,
2012
, “
Exergy, Economic, and Environmental Analysis of a PEM Fuel Cell Power System to Meet Electrical and Thermal Energy Needs of Residential Buildings
,”
J. Fuel Cell Sci. Technol.
,
9
(
5
), p.
051001
. 10.1115/1.4006049
31.
Barbir
,
F.
, and
Gomez
,
T.
,
1997
, “
Efficiency and Economics of Proton Exchange Membrane (PEM) Fuel Cells
,”
Int. J. Hydrogen Energy
,
22
(
10–11
), pp.
1027
1037
. 10.1016/S0360-3199(96)00175-9
32.
Adams
,
T.
,
Abdel-Khalik
,
S.
,
Jeter
,
S.
, and
Qureshi
,
Z.
,
1998
, “
An Experimental Investigation of Single-Phase Forced Convection in Microchannels
,”
Int. J. Heat Mass Transfer
,
41
(
6–7
), pp.
851
857
. 10.1016/S0017-9310(97)00180-4
33.
Bergman
,
T. L.
,
Incropera
,
F. P.
,
Lavine
,
A. S.
, and
DeWitt
,
D. P.
,
2011
,
Introduction to Heat Transfer
,
John Wiley & Sons
,
New York
.
34.
Idelchik
,
I. E.
,
1986
,
Handbook of Hydraulic Resistance
,
Hemisphere Publishing Corp
,
Washington, DC
, p.
662
, Translation 1986.
35.
Dohle
,
H.
,
Jung
,
R.
,
Kimiaie
,
N.
,
Mergel
,
J.
, and
Müller
,
M.
,
2003
, “
Interaction Between the Diffusion Layer and the Flow Field of Polymer Electrolyte Fuel Cells—Experiments and Simulation Studies
,”
J. Power Sources
,
124
(
2
), pp.
371
384
. 10.1016/S0378-7753(03)00800-0
36.
Bejan
,
A.
,
2016
,
Advanced Engineering Thermodynamics
,
John Wiley & Sons
,
New York
.
37.
Ehyaei
,
M.
, and
Mozafari
,
A.
,
2010
, “
Energy, Economic and Environmental (3E) Analysis of a Micro Gas Turbine Employed for On-Site Combined Heat and Power Production
,”
Energy Build.
,
42
(
2
), pp.
259
264
. 10.1016/j.enbuild.2009.09.001
38.
Horngren
,
C. T.
,
Foster
,
G.
,
Datar
,
S. M.
,
Rajan
,
M.
,
Ittner
,
C.
, and
Baldwin
,
A. A.
,
2010
, “
Cost Accounting: A Managerial Emphasis
,”
Issues Acc. Educ.
,
25
(
4
), pp.
789
790
. 10.2308/iace.2010.25.4.789
39.
Field
,
B. C.
, and
Field
,
M. K.
,
1997
,
Environmental Economics: An Introduction
,
6th ed
.,
McGraw-Hill
.
40.
Bernow
,
S. S.
, and
Marron
,
D. B.
,
1990
,
Valuation of Environmental Externalities for Energy Planning and Operations: May 1990 Update
,
Tellus Institute
,
Boston
.
41.
Bohi
,
D. R.
, and
Toman
,
M. A.
,
1991
, An Assessment of Energy Security Externalities, Resources for the Future.
42.
Sakawa
,
M.
,
2013
,
Fuzzy Sets and Interactive Multiobjective Optimization
,
Springer Science & Business Media
,
New York
.
43.
Coello
,
C. A. C.
,
Pulido
,
G. T.
, and
Lechuga
,
M. S.
,
2004
, “
Handling Multiple Objectives With Particle Swarm Optimization
,”
IEEE Trans. Evol. Comput.
,
8
(
3
), pp.
256
279
. 10.1109/TEVC.2004.826067
44.
Saed
,
A. A.
, and
Kadir
,
W. M. W.
,
2011
, “
Applying Particle Swarm Optimization to Software Performance Prediction an Introduction to the Approach
,”
2011 Malaysian Conference in Software Engineering
,
Johor Bahru, Malaysia
,
September
,
IEEE
, pp.
207
212
.
45.
Reyes-Sierra
,
M.
, and
Coello
,
C. C.
,
2006
, “
Multi-Objective Particle Swarm Optimizers: A Survey of the State-of-the-Art
,”
Int. J. Comput. Intell. Res.
,
2
(
3
), pp.
287
308
. 10.5019/j.ijcir.2006.68
46.
Rao
,
S. S.
,
2009
,
Engineering Optimization: Theory and Practice
,
John Wiley & Sons
,
New York
.
47.
Lalwani
,
S.
,
Singhal
,
S.
,
Kumar
,
R.
, and
Gupta
,
N.
,
2013
, “
A Comprehensive Survey: Applications of Multi-Objective Particle Swarm Optimization (MOPSO) Algorithm
,”
Trans. Comb.
,
2
(
1
), pp.
39
101
.
48.
Kusiak
,
A.
, and
Xu
,
G.
,
2012
, “
Modeling and Optimization of HVAC Systems Using a Dynamic Neural Network
,”
Energy
,
42
(
1
), pp.
241
250
. 10.1016/j.energy.2012.03.063
49.
Hosseini
,
S. S.
,
Hamidi
,
S. A.
,
Mansuri
,
M.
, and
Ghoddosian
,
A.
,
2015
, “
Multi Objective Particle Swarm Optimization (MOPSO) for Size and Shape Optimization of 2D Truss Structures
,”
Period. Polytech. Civ. Eng.
,
59
(
1
), pp.
9
14
. 10.3311/PPci.7341
50.
Eberhart
,
R. C.
, and
Shi
,
Y.
,
1998
, “
Comparison Between Genetic Algorithms and Particle Swarm Optimization
,”
International Conference on Evolutionary Programming
,
Berlin, Heidelberg
,
Springer
, pp.
611
616
.
51.
Eberhart
,
R.
, and
Kennedy
,
J.
,
1995
, “
A New Optimizer Using Particle Swarm Theory
,”
Proceedings of the Sixth International Symposium on Micro Machine and Human Science, MHS’95
,
Nagoya, Japan
,
IEEE
, pp.
39
43
.
52.
Angeline
,
P. J.
,
2005
, “
Evolutionary Optimization Versus Particle Swarm Optimization: Philosophy and Performance Differences
,”
International Conference on Evolutionary Programming
,
Berlin, Heidelberg
,
Springer
, pp.
601
610
.
53.
Alvarez-Benitez
,
J. E.
,
Everson
,
R. M.
, and
Fieldsend
,
J. E.
,
2005
, “
A MOPSO Algorithm Based Exclusively on Pareto Dominance Concepts
,”
International Conference on Evolutionary Multi-Criterion Optimization
,
Berlin, Heidelberg
,
Springer
, pp.
459
473
.
54.
Abdelhalim
,
M.
, and
Habib
,
S.
,
2009
, “
Particle Swarm Optimization for HW/SW Partitioning
,”
Particle Swarm Optim.
,
3
, pp.
49
76
. 10.5772/6740
55.
Ab Wahab
,
M. N.
,
Nefti-Meziani
,
S.
, and
Atyabi
,
A.
,
2015
, “
A Comprehensive Review of Swarm Optimization Algorithms
,”
PLoS One
,
10
(
5
), p.
e0122827
. 10.1371/journal.pone.0122827
You do not currently have access to this content.