This study investigates the dynamic behavior of a solid oxide steam electrolyzer (SOSE) system without an external heat source that uses transient photovoltaic (PV) generated power as an input to produce compressed (to 3 MPa) renewable hydrogen to be injected directly into the natural gas network. A cathode-supported crossflow planar solid oxide electrolysis (SOE) cell is modeled in a quasi-three-dimensional thermo-electrochemical model that spatially and temporally simulates the performance of a unit cell operating dynamically. The stack is composed of 2500 unit cells that are assumed to be assembled into identically operating stacks, creating a 300 kW electrolyzer stack module. For the designed 300 kW SOSE stack (thermoneutral voltage achieved at design steady-state conditions), powered by the dynamic 0–450 kW output of PV systems, thermal management and balancing of all heat supply and cooling demands is required based upon the operating voltage to enable efficient operation and prevent degradation of the SOSE stacks. Dynamic system simulation results show that the SOSE system is capable of following the dynamic PV generated power for a sunny day (maximum PV generated power) and a cloudy day (highly dynamic PV generated power) while the SOSE stack temperature gradient is always maintained below a maximum set point along the stack for both days. The system efficiency based upon lower heating value of the generated hydrogen is between 0–75% and 0–78% with daily hydrogen production of 94 kg and 55 kg for sunny and cloudy days, respectively.

References

References
1.
California Energy Commission
,
2017
, California Energy Commission Tracking progress, renewable energy Overview.
2.
Li
,
W.
,
Wang
,
H.
,
Shi
,
Y.
, and
Cai
,
N.
,
2013
, “
Performance and Methane Production Characteristics of H2O–CO2 Co-Electrolysis in Solid Oxide Electrolysis Cells
,”
Int. J. Hydrogen Energy
,
38
(
25
), pp.
11104
11109
.
3.
Stoots
,
C.
,
O’Brien
,
J.
, and
Hartvigsen
,
J.
,
2009
, “
Results of Recent High Temperature Co-Electrolysis Studies at the Idaho National Laboratory
,”
Int. J. Hydrogen Energy
,
34
(
9
), pp.
4208
4215
.
4.
Graves
,
C.
,
Ebbesen
,
S. D.
, and
Mogensen
,
M.
,
2011
, “
Co-Electrolysis of CO2 and H2O in Solid Oxide Cells: Performance and Durability
,”
Solid State Ionics
,
192
(
1
), pp.
398
403
.
5.
Ni
,
M.
,
2010
, “
Modeling of a Solid Oxide Electrolysis Cell for Carbon Dioxide Electrolysis
,”
Chem. Eng. J.
,
164
(
1
), pp.
246
254
.
6.
Ni
,
M.
,
2012
, “
2D Thermal Modeling of a Solid Oxide Electrolyzer Cell (SOEC) for Syngas Production by H2O/CO2 Co-Electrolysis
,”
Int. J. Hydrogen Energy
,
37
(
8
), pp.
6389
6399
.
7.
Ni
,
M.
,
Leung
,
M. K.
, and
Leung
,
D. Y.
,
2007
, “
Energy and Exergy Analysis of Hydrogen Production by Solid Oxide Steam Electrolyzer Plant
,”
Int. J. Hydrogen Energy
,
32
(
18
), pp.
4648
4660
.
8.
Ni
,
M.
,
2009
, “
Computational Fluid Dynamics Modeling of a Solid Oxide Electrolyzer Cell for Hydrogen Production
,”
Int. J. Hydrogen Energy
,
34
(
18
), pp.
7795
7806
.
9.
Grondin
,
D.
,
Deseure
,
J.
,
Brisse
,
A.
,
Zahid
,
M.
, and
Ozil
,
P.
,
2008
, “
Multiphysics Modeling and Simulation of a Solid Oxide Electrolysis Cell
,”
Proceedings of the COMSOL Conference
,
Hannover, Germany
,
Nov. 4–6
.
10.
Grondin
,
D.
,
Deseure
,
J.
,
Ozil
,
P.
,
Chabriat
,
J.-P.
,
Grondin-Perez
,
B.
, and
Brisse
,
A.
,
2013
, “
Solid Oxide Electrolysis Cell 3D Simulation Using Artificial Neural Network for Cathodic Process Description
,”
Chem. Eng. Res. Des.
,
91
(
1
), pp.
134
140
.
11.
Reytier
,
M.
,
Di Iorio
,
S.
,
Chatroux
,
A.
,
Petitjean
,
M.
,
Cren
,
J.
,
De Saint Jean
,
M.
,
Aicart
,
J.
, and
Mougin
,
J.
,
2015
, “
Stack Performances in High Temperature Steam Electrolysis and Co-Electrolysis
,”
Int. J. Hydrogen Energy
,
40
(
35
), pp.
11370
11377
.
12.
Penchini
,
D.
,
Cinti
,
G.
,
Discepoli
,
G.
, and
Desideri
,
U.
,
2014
, “
Theoretical Study and Performance Evaluation of Hydrogen Production by 200 W Solid Oxide Electrolyzer Stack
,”
Int. J. Hydrogen Energy
,
39
(
17
), pp.
9457
9466
.
13.
Stempien
,
J. P.
,
Ding
,
O. L.
,
Sun
,
Q.
, and
Chan
,
S. H.
,
2012
, “
Energy and Exergy Analysis of Solid Oxide Electrolyser Cell (SOEC) Working as a CO2 Mitigation Device
,”
Int. J. Hydrogen Energy
,
37
(
19
), pp.
14518
14527
.
14.
Sanz-Bermejo
,
J.
,
Muñoz-Antón
,
J.
,
Gonzalez-Aguilar
,
J.
, and
Romero
,
M.
,
2015
, “
Part Load Operation of a Solid Oxide Electrolysis System for Integration With Renewable Energy Sources
,”
Int. J. Hydrogen Energy
,
40
(
26
), pp.
8291
8303
.
15.
Sanz-Bermejo
,
J.
,
Gallardo-Natividad
,
V.
,
González-Aguilar
,
J.
, and
Romero
,
M.
,
2014
, “
Coupling of a Solid-Oxide Cell Unit and a Linear Fresnel Reflector Field for Grid Management
,”
Energy Procedia
,
57
, pp.
706
715
.
16.
Petipas
,
F.
,
Brisse
,
A.
, and
Bouallou
,
C.
,
2013
, “
Model-Based Behaviour of a High Temperature Electrolyser System Operated at Various Loads
,”
J. Power Sources
,
239
, pp.
584
595
.
17.
Petipas
,
F.
,
Fu
,
Q.
,
Brisse
,
A.
, and
Bouallou
,
C.
,
2013
, “
Transient Operation of a Solid Oxide Electrolysis Cell
,”
Int. J. Hydrogen Energy
,
38
(
7
), pp.
2957
2964
.
18.
Petipas
,
F.
,
Brisse
,
A.
, and
Bouallou
,
C.
,
2015
, “
Modelled Behavior of a High Temperature Electrolyser System Coupled With a Solar Farm
,”
Chem. Eng. Trans.
,
45
, pp.
1015
1020
.
19.
Cai
,
Q.
,
Brandon
,
N. P.
, and
Adjiman
,
C. S.
,
2010
, “
Modelling the Dynamic Response of a Solid Oxide Steam Electrolyser to Transient Inputs During Renewable Hydrogen Production
,”
Front. Energy Power Eng. China
,
4
(
2
), pp.
211
222
.
20.
Cai
,
Q.
,
Adjiman
,
C. S.
, and
Brandon
,
N. P.
,
2014
, “
Optimal Control Strategies for Hydrogen Production When Coupling Solid Oxide Electrolysers With Intermittent Renewable Energies
,”
J. Power Sources
,
268
, pp.
212
224
.
21.
Luo
,
Y.
,
Shi
,
Y.
,
Li
,
W.
, and
Cai
,
N.
,
2015
, “
Dynamic Electro-Thermal Modeling of Co-Electrolysis of Steam and Carbon Dioxide in a Tubular Solid Oxide Electrolysis Cell
,”
Energy
,
89
, pp.
637
647
.
22.
McLarty
,
D.
,
Brouwer
,
J.
, and
Samuelsen
,
S.
,
2013
, “
A Spatially Resolved Physical Model for Transient System Analysis of High Temperature Fuel Cells
,”
Int. J. Hydrogen Energy
,
38
(
19
), pp.
7935
7946
.
23.
McLarty
,
D.
,
Samuelsen
,
S.
, and
Brouwer
,
J.
,
2010
, “
Novel Dynamic Quasi-3-Dimensional High Temperature Fuel Cell Model with Internal Manifolding
,” ,
Brooklyn, New York
,
June 14–16
, American Society of Mechanical Engineers.
24.
Wood
,
A.
,
He
,
H.
,
Joia
,
T.
,
Krivy
,
M.
, and
Steedman
,
D.
,
2016
, “
Communication—Electrolysis at High Efficiency With Remarkable Hydrogen Production Rates
,”
J. Electrochem. Soc.
,
163
(
5
), pp.
F327
F329
.
25.
Giglio
,
E.
,
Lanzini
,
A.
,
Santarelli
,
M.
, and
Leone
,
P.
,
2015
, “
Synthetic Natural Gas Via Integrated High-Temperature Electrolysis and Methanation: Part I—Energy Performance
,”
J. Energy Storage
,
1
, pp.
22
37
.
26.
Ferrero
,
D.
,
Lanzini
,
A.
,
Santarelli
,
M.
, and
Leone
,
P.
,
2013
, “
A Comparative Assessment on Hydrogen Production From Low-and High-Temperature Electrolysis
,”
Int. J. Hydrogen Energy
,
38
(
9
), pp.
3523
3536
.
27.
Sadeghi Reineh
,
M.
,
Fardadi
,
M.
, and
Jabbari
,
F.
,
2017
, “
Thermal Control of SOFC: An Anti-Windup Approach for Maximizing Usable Power
,”
IEEE Conference on Control Technology and Applications
,
Kohala Coast, Hawaii
,
Aug. 27–30
, pp.
311
316
.
You do not currently have access to this content.