Li−O2 batteries with carbon electrodes made from three commercial carbons and carbon made from waste tea leaves are investigated in this study. The waste tea leaves are recycled from household tea leaves and activated using KOH. The carbon materials have various specific surface areas, and porous structures are characterized by the N2 adsorption/desorption. Vulcan XC 72 carbon shows a higher specific surface area (264.1 m2/g) than the acetylene black (76.5 m2/g) and Super P (60.9 m2/g). The activated tea leaves have an extremely high specific surface area of 2868.4 m2/g. First, we find that the commercial carbons achieve similar discharge capacities of ∼2.50 Ah/g at 0.5 mA/cm2. The micropores in carbon materials result in a high specific surface area but cannot help to achieve higher discharge capacity because it cannot accommodate the solid discharge product (Li2O2). Mixing the acetylene black and the Vulcan XC 72 improves the discharge capacity due to the optimized porous structure. The discharge capacity increases by 42% (from 2.73 ± 0.46 to 3.88 ± 0.22 Ah/g) at 0.5 mA/cm2 when the mass fraction of Vulcan XC 72 changes from 0 to 0.3. Second, the electrode made from activated tea leaves is demonstrated for the first time in Li−O2 batteries. Mixtures of activated tea leaves and acetylene black confirm that mixtures of carbon material with different specific surface areas can increase the discharge capacity. Moreover, carbon made from recycled tea leaves can reduce the cost of the electrode, making electrodes more economically achievable. This study practically enhances the discharge capacity of Li−O2 batteries using mixed carbons and provides a method for fabricating carbon electrodes with lower cost and better environmental friendliness.

References

References
1.
Hannan
,
M.
,
Hoque
,
M.
,
Mohamed
,
A.
, and
Ayob
,
A.
,
2017
, “
Review of Energy Storage Systems for Electric Vehicle Applications: Issues and Challenges
,”
Renew. Sustain. Energy Rev.
,
69
, pp.
771
789
.
2.
Andre
,
D.
,
Kim
,
S.-J.
,
Lamp
,
P.
,
Lux
,
S. F.
,
Maglia
,
F.
,
Paschos
,
O.
, and
Stiaszny
,
B.
,
2015
, “
Future Generations of Cathode Materials: An Automotive Industry Perspective
,”
J. Mater. Chem. A
,
3
(
13
), pp.
6709
6732
.
3.
Aurbach
,
D.
,
McCloskey
,
B. D.
,
Nazar
,
L. F.
, and
Bruce
,
P. G.
,
2016
, “
Advances in Understanding Mechanisms Underpinning Lithium–Air Batteries
,”
Nat. Energy
,
1
(
9
), p.
16128
.
4.
Eftekhari
,
A.
,
2018
, “
On the Theoretical Capacity/Energy of Lithium Batteries and Their Counterparts
,”
ACS Sustain. Chem. Eng.
7
(
4
), pp.
3684
3687
.
5.
Nitta
,
N.
,
Wu
,
F.
,
Lee
,
J. T.
, and
Yushin
,
G.
,
2015
, “
Li-Ion Battery Materials: Present and Future
,”
Mater. Today
,
18
(
5
), pp.
252
264
.
6.
Hu
,
L.-H.
,
Wu
,
F.-Y.
,
Lin
,
C.-T.
,
Khlobystov
,
A. N.
, and
Li
,
L.-J.
,
2013
, “
Graphene-Modified LiFePO4 Cathode for Lithium Ion Battery Beyond Theoretical Capacity
,”
Nat. Commun.
,
4
, p.
1687
.
7.
Chase
,
M. W.
, Jr.
,
1998
,
NIST-JANAF Thermochemical Tables
(J. Phys. Chem. Ref. Data, Monograph 9),
American Institute of Physics
,
College Park, MD
.
8.
Bruce
,
P. G.
,
Freunberger
,
S. A.
,
Hardwick
,
L. J.
, and
Tarascon
,
J.-M.
,
2012
, “
Li–O2 and Li–S Batteries With High Energy Storage
,”
Nat. Mater.
,
11
(
1
), pp.
19
29
.
9.
Lu
,
J.
,
Li
,
L.
,
Park
,
J.-B.
,
Sun
,
Y.-K.
,
Wu
,
F.
, and
Amine
,
K.
,
2014
, “
Aprotic and Aqueous Li–O2 Batteries
,”
Chem. Rev.
,
114
(
11
), pp.
5611
5640
.
10.
Kundu
,
D.
,
Black
,
R.
,
Adams
,
B.
,
Harrison
,
K.
,
Zavadil
,
K.
, and
Nazar
,
L. F.
,
2015
, “
Nanostructured Metal Carbides for Aprotic Li–O2 Batteries: New Insights Into Interfacial Reactions and Cathode Stability
,”
J. Phys. Chem. Lett.
,
6
(
12
), pp.
2252
2258
.
11.
Luo
,
L.
,
Liu
,
B.
,
Song
,
S.
,
Xu
,
W.
,
Zhang
,
J.-G.
, and
Wang
,
C.
,
2017
, “
Revealing the Reaction Mechanisms of Li–O2 Batteries Using Environmental Transmission Electron Microscopy
,”
Nat. Nanotechnol.
,
12
(
6
), pp.
535
539
.
12.
Imanishi
,
N.
, and
Yamamoto
,
O.
,
2014
, “
Rechargeable Lithium–Air Batteries: Characteristics and Prospects
,”
Mater. Today
,
17
(
1
), pp.
24
30
.
13.
Zhang
,
Z.
,
Lu
,
J.
,
Assary
,
R. S.
,
Du
,
P.
,
Wang
,
H.-H.
,
Sun
,
Y.-K.
,
Qin
,
Y.
,
Lau
,
K. C.
,
Greeley
,
J.
, and
Redfern
,
P. C.
,
2011
, “
Increased Stability Toward Oxygen Reduction Products for Lithium-Air Batteries With Oligoether-Functionalized Silane Electrolytes
,”
J. Phys. Chem. C
,
115
(
51
), pp.
25535
25542
.
14.
Aurbach
,
D.
,
Zinigrad
,
E.
,
Cohen
,
Y.
, and
Teller
,
H.
,
2002
, “
A Short Review of Failure Mechanisms of Lithium Metal and Lithiated Graphite Anodes in Liquid Electrolyte Solutions
,”
Solid State Ionics
,
148
(
3–4
), pp.
405
416
.
15.
Yamaki
,
J.-I.
,
Tobishima
,
S.-I.
,
Hayashi
,
K.
,
Saito
,
K.
,
Nemoto
,
Y.
, and
Arakawa
,
M.
,
1998
, “
A Consideration of the Morphology of Electrochemically Deposited Lithium in an Organic Electrolyte
,”
J. Power Sources
,
74
(
2
), pp.
219
227
.
16.
Chatterjee
,
A.
,
Or
,
S. W.
, and
Cao
,
Y.
,
2018
, “
Transition Metal Hollow Nanocages as Promising Cathodes for the Long-Term Cyclability of Li–O2 Batteries
,”
Nanomaterials
,
8
(
5
), p.
308
.
17.
Li
,
F.
,
Tang
,
D.-M.
,
Chen
,
Y.
,
Golberg
,
D.
,
Kitaura
,
H.
,
Zhang
,
T.
,
Yamada
,
A.
, and
Zhou
,
H.
,
2013
, “
Ru/ITO: A Carbon-Free Cathode for Nonaqueous Li–O2 Battery
,”
Nano Lett.
,
13
(
10
), pp.
4702
4707
.
18.
Lu
,
X.
,
Yin
,
Y.
,
Zhang
,
L.
,
Huang
,
S.
,
Xi
,
L.
,
Liu
,
L.
,
Oswald
,
S.
, and
Schmidt
,
O. G.
,
2019
, “
3D Ag/NiO-Fe2O3/Ag Nanomembranes as Carbon-Free Cathode Materials for Li-O2 Batteries
,”
Energy Storage Mater.
,
16
, pp.
155
162
.
19.
Sakai
,
K.
,
Iwamura
,
S.
, and
Mukai
,
S. R.
,
2017
, “
Influence of the Porous Structure of the Cathode on the Discharge Capacity of Lithium-Air Batteries
,”
J. Electrochem. Soc.
,
164
(
13
), pp.
A3075
A3080
.
20.
Zhai
,
D.
,
Wang
,
H.-H.
,
Yang
,
J.
,
Lau
,
K. C.
,
Li
,
K.
,
Amine
,
K.
, and
Curtiss
,
L. A.
,
2013
, “
Disproportionation in Li–O2 Batteries Based on a Large Surface Area Carbon Cathode
,”
J. Am. Chem. Soc.
,
135
(
41
), pp.
15364
15372
.
21.
Xiao
,
J.
,
Wang
,
D.
,
Xu
,
W.
,
Wang
,
D.
,
Williford
,
R. E.
,
Liu
,
J.
, and
Zhang
,
J.-G.
,
2010
, “
Optimization of Air Electrode for Li/Air Batteries
,”
J. Electrochem. Soc.
,
157
(
4
), pp.
A487
A492
.
22.
Meini
,
S.
,
Piana
,
M.
,
Beyer
,
H.
,
Schwämmlein
,
J.
, and
Gasteiger
,
H. A.
,
2012
, “
Effect of Carbon Surface Area on First Discharge Capacity of Li-O2 Cathodes and Cycle-Life Behavior in Ether-Based Electrolytes
,”
J. Electrochem. Soc.
,
159
(
12
), pp.
A2135
A2142
.
23.
Pan
,
W.
,
Yang
,
X.
,
Bao
,
J.
, and
Wang
,
M.
,
2017
, “
Optimizing Discharge Capacity of Li-O2 Batteries by Design of Air-Electrode Porous Structure: Multifidelity Modeling and Optimization
,”
J. Electrochem. Soc.
,
164
(
11
), pp.
E3499
E3511
.
24.
Li
,
X.
,
2015
, “
A Modeling Study of the Pore Size Evolution in Lithium-Oxygen Battery Electrodes
,”
J. Electrochem. Soc.
,
162
(
8
), pp.
A1636
A1645
.
25.
Li
,
X.
, and
Faghri
,
A.
,
2012
, “
Optimization of the Cathode Structure of Lithium-Air Batteries Based on a Two-Dimensional, Transient, Non-Isothermal Model
,”
J. Electrochem. Soc.
,
159
(
10
), pp.
A1747
A1754
.
26.
Talapaneni
,
S. N.
,
Lee
,
J. H.
,
Je
,
S. H.
,
Buyukcakir
,
O.
,
Kwon
,
T. W.
,
Polychronopoulou
,
K.
,
Choi
,
J. W.
, and
Coskun
,
A.
,
2017
, “
Chemical Blowing Approach for Ultramicroporous Carbon Nitride Frameworks and Their Applications in Gas and Energy Storage
,”
Adv. Funct. Mater.
,
27
(
1
), p.
1604658
.
27.
Talapaneni
,
S. N.
,
Hwang
,
T. H.
,
Je
,
S. H.
,
Buyukcakir
,
O.
,
Choi
,
J. W.
, and
Coskun
,
A.
,
2016
, “
Elemental-Sulfur-Mediated Facile Synthesis of a Covalent Triazine Framework for High-Performance Lithium–Sulfur Batteries
,”
Angew. Chem. Int. Ed.
,
55
(
9
), pp.
3106
3111
.
28.
Wang
,
F.
, and
Li
,
X.
,
2018
, “
Effects of the Electrode Wettability on the Deep Discharge Capacity of Li–O2 Batteries
,”
ACS Omega
,
3
(
6
), pp.
6006
6012
.
29.
Wang
,
F.
, and
Li
,
X.
,
2018
, “
Discharge Li-O2 Batteries With Intermittent Current
,”
J. Power Sources
,
394
, pp.
50
56
.
30.
Wang
,
F.
, and
Li
,
X.
,
2018
, “
Pore Scale Simulations of Porous Electrodes of Li–O2 Batteries at Different Saturation Levels
,”
ACS Appl. Mater. Interfaces
,
10
(
31
), pp.
26222
26232
.
31.
Zhang
,
G.
,
Zheng
,
J.
,
Liang
,
R.
,
Zhang
,
C.
,
Wang
,
B.
,
Hendrickson
,
M. A.
, and
Plichta
,
E.
,
2010
, “
Lithium–Air Batteries Using SWNT/CNF Buckypapers as Air Electrodes
,”
J. Electrochem. Soc.
,
157
(
8
), pp.
A953
A956
.
32.
Beattie
,
S.
,
Manolescu
,
D.
, and
Blair
,
S.
,
2009
, “
High-Capacity Lithium–Air Cathodes
,”
J. Electrochem. Soc.
,
156
(
1
), pp.
A44
A47
.
33.
Cheng
,
H.
, and
Scott
,
K.
,
2010
, “
Carbon-Supported Manganese Oxide Nanocatalysts for Rechargeable Lithium–Air Batteries
,”
J. Power Sources
,
195
(
5
), pp.
1370
1374
.
34.
Yang
,
X.-H.
,
He
,
P.
, and
Xia
,
Y.-Y.
,
2009
, “
Preparation of Mesocellular Carbon Foam and Its Application for Lithium/Oxygen Battery
,”
Electrochem. Commun.
,
11
(
6
), pp.
1127
1130
.
35.
Huang
,
J.
,
Tong
,
B.
,
Li
,
Z.
,
Zhou
,
T.
,
Zhang
,
J.
, and
Peng
,
Z.
,
2018
, “
Probing the Reaction Interface in Li–Oxygen Batteries Using Dynamic Electrochemical Impedance Spectroscopy: Discharge-Charge Asymmetry in Reaction Sites and Electronic Conductivity
,”
J. Phys. Chem. Lett.
,
9
(
12
), pp.
3403
3408
.
36.
Sandhu
,
S. S.
,
Fellner
,
J. P.
, and
Brutchen
,
G. W.
,
2007
, “
Diffusion-Limited Model for a Lithium/Air Battery With an Organic Electrolyte
,”
J. Power Sources
,
164
(
1
), pp.
365
371
.
37.
Albertus
,
P.
,
Girishkumar
,
G.
,
McCloskey
,
B.
,
Sánchez-Carrera
,
R. S.
,
Kozinsky
,
B.
,
Christensen
,
J.
, and
Luntz
,
A. C.
,
2011
, “
Identifying Capacity Limitations in the Li/Oxygen Battery Using Experiments and Modeling
,”
J. Electrochem. Soc.
,
158
(
3
), pp.
A343
A351
.
38.
Hummelshøj
,
J. S.
,
Blomqvist
,
J.
,
Datta
,
S.
,
Vegge
,
T.
,
Rossmeisl
,
J.
,
Thygesen
,
K. S.
,
Luntz
,
A.
,
Jacobsen
,
K. W.
, and
Nørskov
,
J. K.
,
2010
, “
Communications: Elementary Oxygen Electrode Reactions in the Aprotic Li-Air Battery
,”
J. Chem. Phys.
,
132
, p.
071101
.
39.
Adams
,
B. D.
,
Radtke
,
C.
,
Black
,
R.
,
Trudeau
,
M. L.
,
Zaghib
,
K.
, and
Nazar
,
L. F.
,
2013
, “
Current Density Dependence of Peroxide Formation in the Li–O2 Battery and Its Effect on Charge
,”
Energy Environ. Sci.
,
6
(
6
), pp.
1772
1778
.
40.
Chen
,
W.
,
Zhang
,
Z.
,
Bao
,
W.
,
Lai
,
Y.
,
Li
,
J.
,
Gan
,
Y.
, and
Wang
,
J.
,
2014
, “
Hierarchical Mesoporous γ-Fe2O3/Carbon Nanocomposites Derived From Metal Organic Frameworks as a Cathode Electrocatalyst for Rechargeable Li-O2 Batteries
,”
Electrochim. Acta
,
134
, pp.
293
301
.
41.
Li
,
Q.
,
Xu
,
P.
,
Gao
,
W.
,
Ma
,
S.
,
Zhang
,
G.
,
Cao
,
R.
,
Cho
,
J.
,
Wang
,
H. L.
, and
Wu
,
G.
,
2014
, “
Graphene/Graphene-Tube Nanocomposites Templated From Cage-Containing Metal-Organic Frameworks for Oxygen Reduction in Li–O2 Batteries
,”
Adv. Mater.
,
26
(
9
), pp.
1378
1386
.
42.
Kuboki
,
T.
,
Okuyama
,
T.
,
Ohsaki
,
T.
, and
Takami
,
N.
,
2005
, “
Lithium-Air Batteries Using Hydrophobic Room Temperature Ionic Liquid Electrolyte
,”
J. Power Sources
,
146
(
1–2
), pp.
766
769
.
43.
Zhang
,
Y.
,
Zhang
,
H.
,
Li
,
J.
,
Wang
,
M.
,
Nie
,
H.
, and
Zhang
,
F.
,
2013
, “
The Use of Mixed Carbon Materials With Improved Oxygen Transport in a Lithium-Air Battery
,”
J. Power Sources
,
240
, pp.
390
396
.
44.
Olivares-Marín
,
M.
,
Palomino
,
P.
,
Enciso
,
E.
, and
Tonti
,
D.
,
2014
, “
Simple Method to Relate Experimental Pore Size Distribution and Discharge Capacity in Cathodes for Li/O2 Batteries
,”
J. Phys. Chem. C
,
118
(
36
), pp.
20772
20783
.
45.
Bhoyate
,
S.
,
Ranaweera
,
C. K.
,
Zhang
,
C.
,
Morey
,
T.
,
Hyatt
,
M.
,
Kahol
,
P. K.
,
Ghimire
,
M.
,
Mishra
,
S. R.
, and
Gupta
,
R. K.
,
2017
, “
Eco-Friendly and High Performance Supercapacitors for Elevated Temperature Applications Using Recycled Tea Leaves
,”
Global Challenges
,
1
(
8
), p.
1700063
.
46.
Black
,
R.
,
Oh
,
S. H.
,
Lee
,
J.-H.
,
Yim
,
T.
,
Adams
,
B.
, and
Nazar
,
L. F.
,
2012
, “
Screening for Superoxide Reactivity in Li-O2 Batteries: Effect on Li2O2/LiOH Crystallization
,”
J. Am. Chem. Soc.
,
134
(
6
), pp.
2902
2905
.
47.
Mohazabrad
,
F.
,
Wang
,
F.
, and
Li
,
X.
,
2017
, “
Influence of the Oxygen Electrode Open Ratio and Electrolyte Evaporation on the Performance of Li–O2 Batteries
,”
ACS Appl. Mater. Interfaces
,
9
(
18
), pp.
15459
15469
.
48.
Mohazabrad
,
F.
,
Wang
,
F.
, and
Li
,
X.
,
2016
, “
Experimental Studies of Salt Concentration in Electrolyte on the Performance of Li-O2 Batteries at Various Current Densities
,”
J. Electrochem. Soc.
,
163
(
13
), pp.
A2623
A2627
.
49.
Dicks
,
A. L.
,
2006
, “
The Role of Carbon in Fuel Cells
,”
J. Power Sources
,
156
(
2
), pp.
128
141
.
50.
Wagner
,
F. T.
,
Lakshmanan
,
B.
, and
Mathias
,
M. F.
,
2010
, “
Electrochemistry and the Future of the Automobile
,”
J. Phys. Chem. Lett.
,
1
(
14
), pp.
2204
2219
.
51.
Li
,
L.
,
Chen
,
C.
,
Chen
,
X.
,
Zhang
,
X.
,
Huang
,
T.
, and
Yu
,
A.
,
2018
, “
Structure and Catalyst Effects on the Electrochemical Performance of Air Electrodes in Lithium-Oxygen Batteries
,”
ChemElectroChem
,
5
(
18
), pp.
2666
2671
.
52.
Lim
,
H. D.
,
Park
,
K. Y.
,
Song
,
H.
,
Jang
,
E. Y.
,
Gwon
,
H.
,
Kim
,
J.
,
Kim
,
Y. H.
,
Lima
,
M. D.
,
Robles
,
R. O.
, and
Lepró
,
X.
,
2013
, “
Enhanced Power and Rechargeability of a Li−O2 Battery Based on a Hierarchical-Fibril CNT Electrode
,”
Adv. Mater.
,
25
(
9
), pp.
1348
1352
.
53.
Wang
,
Z. L.
,
Xu
,
D.
,
Xu
,
J. J.
,
Zhang
,
L. L.
, and
Zhang
,
X. B.
,
2012
, “
Graphene Oxide Gel-Derived, Free-Standing, Hierarchically Porous Carbon for High-Capacity and High-Rate Rechargeable Li-O2 Batteries
,”
Adv. Funct. Mater.
,
22
(
17
), pp.
3699
3705
.
54.
Song
,
H.
,
Xu
,
S.
,
Li
,
Y.
,
Dai
,
J.
,
Gong
,
A.
,
Zhu
,
M.
,
Zhu
,
C.
,
Chen
,
C.
,
Chen
,
Y.
, and
Yao
,
Y.
,
2018
, “
Hierarchically Porous, Ultrathick, “Breathable” Wood-Derived Cathode for Lithium-Oxygen Batteries
,”
Adv. Energy Mater.
,
8
(
4
), p.
1701203
.
55.
Zhu
,
C.
,
Du
,
L.
,
Luo
,
J.
,
Tang
,
H.
,
Cui
,
Z.
,
Song
,
H.
, and
Liao
,
S.
,
2018
, “
A Renewable Wood-Derived Cathode for Li–O2 Batteries
,”
J. Mater. Chem. A
,
6
(
29
), pp.
14291
14298
.
56.
Peng
,
C.
,
Yan
,
X.-B.
,
Wang
,
R.-T.
,
Lang
,
J.-W.
,
Ou
,
Y.-J.
, and
Xue
,
Q.-J.
,
2013
, “
Promising Activated Carbons Derived From Waste Tea-Leaves and Their Application in High Performance Supercapacitors Electrodes
,”
Electrochim. Acta
,
87
, pp.
401
408
.
This content is only available via PDF.
You do not currently have access to this content.