In this study, the phase separation phenomenon and diffusion-induced stresses in lithium iron phosphate (LiFePO4) particles under a potentiostatic discharging process have been simulated using the phase field method. The realistic particles reconstructed from synchrotron nano X-ray tomography along with idealized spherical and ellipsoid shaped particles were studied. The results show that stress and diffusion process in particles are strongly influenced by particle shapes, especially at the initial lithiation stage. Stresses in the realistic particles are higher than that in the idealized spherical ones by at least 30%. The diffusion-induced hydrostatic stress has a strong relationship with lithium ion concentration. The hydrostatic stresses and first principal stresses tend to shift from lower values to higher values as the particle takes in more lithium ions. Additionally, the diffusion-induced stresses are related to the maximum concentration difference in the particle. High concentration difference will cause high stresses. In ellipsoid particles, the stress levels increase with the aspect ratios. The model provides a design tool to optimize the performance of cathode materials with phase separation phenomena.

References

References
1.
Tarascon
,
J. M.
, and
Armand
,
M.
,
2001
, “
Issues and Challenges Facing Rechargeable Lithium Batteries
,”
Nature
,
414
, pp.
359
367
.
2.
Nitta
,
N.
,
Wu
,
F.
,
Lee
,
J. T.
, and
Yushin
,
G.
,
2015
, “
Li-Ion Battery Materials: Present and Future
,”
Mater. Today
,
18
, pp.
252
264
.
3.
Liu
,
C.
,
Neale
,
Z. G.
, and
Cao
,
G.
,
2016
, “
Understanding Electrochemical Potentials of Cathode Materials in Rechargeable Batteries
,”
Mater. Today
,
19
, pp.
109
123
.
4.
Yuan
,
L.-X.
,
Wang
,
Z.-H.
,
Zhang
,
W.-X.
,
Hu
,
X.-L.
,
Chen
,
J.-T.
,
Huang
,
Y.-H.
, and
Goodenough
,
J. B.
,
2011
, “
Development and Challenges of LiFePO4 Cathode Material for Lithium-Ion Batteries
,”
Energy Environ. Sci.
,
4
, pp.
269
284
.
5.
Zhang
,
W.-J.
,
2011
, “
Structure and Performance of LiFePO4 Cathode Materials: A Review
,”
J. Power Sources
,
196
, pp.
2962
2970
.
6.
Li
,
D.
, and
Zhou
,
H.
,
2014
, “
Two-Phase Transition of Li-Intercalation Compounds in Li-Ion Batteries
,”
Mater. Today
,
17
, pp.
451
463
.
7.
Chen
,
G.
,
Song
,
X.
, and
Richardson
,
T. J.
,
2006
, “
Electron Microscopy Study of the LiFePO4 to FePO4 Phase Transition
,”
Electrochem. Solid-State Lett.
,
9
, pp.
A295
A298
.
8.
Laffont
,
L.
,
Delacourt
,
C.
,
Gibot
,
P.
,
Wu
,
M. Y.
,
Kooyman
,
P.
,
Masquelier
,
C.
, and
Marie Tarascon
,
J.
,
2006
, “
Study of the LiFePO4/FePO4 Two-Phase System by High-Resolution Electron Energy Loss Spectroscopy
,”
Chem. Mater.
,
18
, pp.
5520
5529
.
9.
Wang
,
J.
, and
Sun
,
X.
,
2015
, “
Olivine LiFePO4: The Remaining Challenges for Future Energy Storage
,”
Energy Environ. Sci.
,
8
, pp.
1110
1138
.
10.
Wang
,
J.
, and
Sun
,
X.
,
2012
, “
Understanding and Recent Development of Carbon Coating on LiFePO4 Cathode Materials for Lithium-Ion Batteries
,”
Energy Environ. Sci.
,
5
, pp.
5163
5185
.
11.
Shin
,
H. C.
,
Cho
,
W. I.
, and
Jang
,
H.
,
2006
, “
Electrochemical Properties of the Carbon-Coated LiFePO4 as a Cathode Material for Lithium-Ion Secondary Batteries
,”
J. Power Sources
,
159
, pp.
1383
1388
.
12.
Safari
,
M.
, and
Delacourt
,
C.
,
2011
, “
Aging of a Commercial Graphite/LiFePO4 Cell
,”
J. Electrochem. Soc.
,
158
, pp.
A1123
A1135
.
13.
Zhang
,
Y.
,
Wang
,
C.-Y.
, and
Tang
,
X.
,
2011
, “
Cycling Degradation of an Automotive LiFePO4 Lithium-Ion Battery
,”
J. Power Sources
,
196
, pp.
1513
1520
.
14.
Julien
,
C. M.
,
Mauger
,
A.
, and
Zaghib
,
K.
,
2011
, “
Surface Effects on Electrochemical Properties of Nano-Sized LiFePO4
,”
J. Mater. Chem.
,
21
, pp.
9955
9968
.
15.
Castro
,
L.
,
Dedryvère
,
R.
,
Ledeuil
,
J.-B.
,
Bréger
,
J.
,
Tessier
,
C.
, and
Gonbeau
,
D.
,
2012
, “
Aging Mechanisms of LiFePO4/Graphite Cells Studied by XPS: Redox Reaction and Electrode/Electrolyte Interfaces
,”
J. Electrochem. Soc.
,
159
, pp.
A357
A363
.
16.
Wu
,
L.
,
Wen
,
Y.
, and
Zhang
,
J.
,
2016
, “
Three-Dimensional Finite Element Study on Li Diffusion Induced Stress in FIB-SEM Reconstructed LiCoO2 Half Cell
,”
Electrochim. Acta
,
222
, pp.
814
820
.
17.
Wu
,
L.
,
Xiao
,
X.
,
Wen
,
Y.
, and
Zhang
,
J.
,
2016
, “
Three-Dimensional Finite Element Study on Stress Generation in Synchrotron X-Ray Tomography Reconstructed Nickel-Manganese-Cobalt Based Half Cell
,”
J. Power Sources
,
336
, pp.
8
18
.
18.
Wu
,
L.
,
Zhang
,
Y.
,
Jung
,
Y.-G.
, and
Zhang
,
J.
,
2015
, “
Three-Dimensional Phase Field Based Finite Element Study on Li Intercalation-Induced Stress in Polycrystalline LiCoO2
,”
J. Power Sources
,
299
, pp.
57
65
.
19.
Park
,
J.
,
Lu
,
W.
, and
Sastry
,
A. M.
,
2011
, “
Numerical Simulation of Stress Evolution in Lithium Manganese Dioxide Particles Due to Coupled Phase Transition and Intercalation
,”
J. Electrochem. Soc.
,
158
, pp.
A201
A206
.
20.
Renganathan
,
S.
,
Sikha
,
G.
,
Santhanagopalan
,
S.
, and
White
,
R. E.
,
2010
, “
Theoretical Analysis of Stresses in a Lithium Ion Cell
,”
J. Electrochem. Soc.
,
157
, pp.
A155
A163
.
21.
Zhao
,
K.
,
Pharr
,
M.
,
Vlassak
,
J. J.
, and
Suo
,
Z.
,
2010
, “
Fracture of Electrodes in Lithium-Ion Batteries Caused by Fast Charging
,”
J. Appl. Phys.
,
108
, p.
073517
.
22.
Cheng
,
Y.-T.
, and
Verbrugge
,
M. W.
,
2009
, “
Evolution of Stress Within a Spherical Insertion Electrode Particle Under Potentiostatic and Galvanostatic Operation
,”
J. Power Sources
,
190
, pp.
453
460
.
23.
Zhang
,
X.
,
Sastry
,
A. M.
, and
Shyy
,
W.
,
2008
, “
Intercalation-Induced Stress and Heat Generation Within Single Lithium-Ion Battery Cathode Particles
,”
J. Electrochem. Soc.
,
155
, pp.
A542
A552
.
24.
Zhang
,
X.
,
Shyy
,
W.
, and
Marie Sastry
,
A.
,
2007
, “
Numerical Simulation of Intercalation-Induced Stress in Li-Ion Battery Electrode Particles
,”
J. Electrochem. Soc.
,
154
, pp.
A910
A916
.
25.
Wu
,
L.
, and
Zhang
,
J.
,
2015
, “
Ab Initio Study of Anisotropic Mechanical Properties of LiCoO2 During Lithium Intercalation and Deintercalation Process
,”
J. Appl. Phys.
,
118
, p.
225101
.
26.
Cheng
,
Y.-T.
, and
Verbrugge
,
M. W.
,
2008
, “
The Influence of Surface Mechanics on Diffusion Induced Stresses Within Spherical Nanoparticles
,”
J. Appl. Phys.
,
104
, p.
083521
.
27.
Cheng
,
Y.-T.
, and
Verbrugge
,
M. W.
,
2010
, “
Diffusion-Induced Stress, Interfacial Charge Transfer, and Criteria for Avoiding Crack Initiation of Electrode Particles
,”
J. Electrochem. Soc.
,
157
, pp.
A508
A516
.
28.
Zhao
,
K.
,
Pharr
,
M.
,
Vlassak
,
J. J.
, and
Suo
,
Z.
,
2011
, “
Inelastic Hosts as Electrodes for High-Capacity Lithium-Ion Batteries
,”
J. Appl. Phys.
,
109
, p.
016110
.
29.
Woodford
,
W. H.
,
Chiang
,
Y.-M.
, and
Carter
,
W. C.
,
2010
, “
‘Electrochemical Shock’ of Intercalation Electrodes: A Fracture Mechanics Analysis
,”
J. Electrochem. Soc.
,
157
, pp.
A1052
A1059
.
30.
Hun
,
J.
,
Chung
,
M.
,
Park
,
M.
,
Woo
,
S.
,
Zhang
,
X.
, and
Marie
,
A.
,
2011
, “
Generation of Realistic Particle Structures and Simulations of Internal Stress: A Numerical/AFM Study of LiMn2O4 Particles
,”
J. Electrochem. Soc.
,
158
, pp.
A434
A442
.
31.
Wu
,
W.
,
Xiao
,
X.
,
Wang
,
M.
, and
Huang
,
X.
,
2014
, “
A Microstructural Resolved Model for the Stress Analysis of Lithium-Ion Batteries
,”
J. Electrochem. Soc.
,
161
, pp.
A803
A813
.
32.
ChiuHuang
,
C.-K.
, and
Shadow Huang
,
H.-Y.
,
2013
, “
Stress Evolution on the Phase Boundary in LiFePO4 Particles
,”
J. Electrochem. Soc.
,
160
, pp.
A2184
A2188
.
33.
Chen
,
L.-Q.
,
2002
, “
Phase-Field Models for Microstructure Evolution
,”
Annu. Rev. Mater. Res.
,
32
, pp.
113
140
.
34.
Chen
,
L.
,
Zhang
,
H. W.
,
Liang
,
L. Y.
,
Liu
,
Z.
,
Qi
,
Y.
,
Lu
,
P.
,
Chen
,
J.
, and
Chena
,
L.-Q.
,
2015
, “
Modulation of Dendritic Patterns During Electrodeposition: A Nonlinear Phase-Field Model
,”
J. Power Sources
,
300
, pp.
376
385
.
35.
Warren
,
J. A.
,
Kobayashi
,
R.
, and
Craig Carter
,
W.
,
2000
, “
Modeling Grain Boundaries Using a Phase-Field Technique
,”
J. Cryst. Growth
,
211
, pp.
18
20
.
36.
Nguyen
,
T. T.
,
Yvonnet
,
J.
,
Zhu
,
Q. Z.
,
Bornert
,
M.
, and
Chateau
,
C.
,
2016
, “
A Phase-Field Method for Computational Modeling of Interfacial Damage Interacting With Crack Propagation in Realistic Microstructures Obtained by Microtomography
,”
Comput. Method Appl. Mech. Eng.
,
312
, pp.
567
595
.
37.
Miehe
,
C.
,
Dal
,
H.
,
Schänzel
,
L. M.
, and
Raina
,
A.
,
2016
, “
A Phase-Field Model for Chemo-Mechanical Induced Fracture in Lithium-Ion Battery Electrode Particles
,”
Int. J. Numer. Methods Eng.
,
106
, pp.
683
711
.
38.
Chen
,
L.
,
Fan
,
F.
,
Hong
,
L.
,
Chen
,
J.
,
Ji
,
Y. Z.
,
Zhang
,
S. L.
,
Zhu
,
T.
, and
Chen
,
L. Q.
,
2014
, “
A Phase-Field Model Coupled With Large Elasto-Plastic Deformation: Application to Lithiated Silicon Electrodes
,”
J. Electrochem. Soc.
,
161
, pp.
F3164
F3172
.
39.
Welland
,
M. J.
,
Karpeyev
,
D.
,
O’Connor
,
D. T.
, and
Heinonen
,
O.
,
2015
, “
Miscibility Gap Closure, Interface Morphology, and Phase Microstructure of 3D LixFePO4 Nanoparticles From Surface Wetting and Coherency Strain
,”
ACS Nano
,
9
, pp.
9757
9771
.
40.
Bai
,
P.
,
Cogswell
,
D. A.
, and
Bazant
,
M. Z.
,
2011
, “
Suppression of Phase Separation in LiFePO4 Nanoparticles During Battery Discharge
,”
Nano Lett.
,
11
, pp.
4890
4896
.
41.
Cogswell
,
D. A.
, and
Bazant
,
M. Z.
,
2013
, “
Theory of Coherent Nucleation in Phase-Separating Nanoparticles
,”
Nano Lett.
,
13
, pp.
3036
3041
.
42.
Zhao
,
Y.
,
Xu
,
B.-X.
,
Stein
,
P.
, and
Gross
,
D.
,
2016
, “
Phase-Field Study of Electrochemical Reactions at Exterior and Interior Interfaces in Li-Ion Battery Electrode Particles
,”
Comput. Methods Appl. Mech. Eng.
,
312
, pp.
428
446
.
43.
Dargaville
,
S.
, and
Farrell
,
T. W.
,
2013
, “
The Persistence of Phase-Separation in LiFePO4 With Two-Dimensional Li+ Transport: The Cahn–Hilliard-Reaction Equation and the Role of Defects
,”
Electrochim. Acta
,
94
, pp.
143
158
.
44.
Bazant
,
M. Z.
,
2013
, “
Theory of Chemical Kinetics and Charge Transfer Based on Nonequilibrium Thermodynamics
,”
Acc. Chem. Res.
,
46
, pp.
1144
1160
.
45.
Yamada
,
A.
,
Koizumi
,
H.
,
Sonoyama
,
N.
, and
Kanno
,
R.
,
2005
, “
Phase Change in LixFePO4
,”
Electrochem. Solid-State Lett.
,
8
, pp.
A409
A413
.
46.
Maxisch
,
T.
, and
Ceder
,
G.
,
2006
, “
Elastic Properties of Olivine LiFePO4 From First Principles
,”
Phys. Rev. B
,
73
, p.
174112
.
47.
Kasavajjula
,
U. S.
,
Wang
,
C.
, and
Arce
,
P. E.
,
2008
, “
Discharge Model for LiFePO4 Accounting for the Solid Solution Range
,”
J. Electrochem. Soc.
,
155
, pp.
A866
A874
.
48.
Churikov
,
A. V.
,
Ivanishchev
,
A. V.
,
Ivanishcheva
,
I. A.
,
Sycheva
,
V. O.
,
Khasanova
,
N. R.
, and
Antipov
,
E. V.
,
2010
, “
Determination of Lithium Diffusion Coefficient in LiFePO4 Electrode by Galvanostatic and Potentiostatic Intermittent Titration Techniques
,”
Electrochim. Acta
,
55
, pp.
2939
2950
.
49.
Lim
,
J.
,
Li
,
Y.
,
Alsem
,
D. H.
,
So
,
H.
,
Lee
,
S. C.
,
Bai
,
P.
,
Cogswell
,
D. A.
,
Liu
,
X.
,
Jin
,
N.
,
Yu
,
Y. S.
,
Salmon
,
N. J.
,
Shapiro
,
D. A.
,
Bazant
,
M. Z.
,
Tyliszczak
,
T.
, and
Chueh
,
W. C.
,
2016
, “
Origin and Hysteresis of Lithium Compositional Spatiodynamics Within Battery Primary Particles
,”
Science
,
353
, pp.
566
571
.
This content is only available via PDF.
You do not currently have access to this content.