In this paper, an economical and simple procedure was adopted for the fabrication of chemically crosslinked polyvinyl alcohol (PVA)-based KOH-doped alkaline membrane for the use in an alkaline direct ethanol fuel cell (ADEFC). The membrane parameters, namely, water uptake, KOH uptake, and ionic conductivity were systematically evaluated. The ionic conductivity of the synthesized membrane was in the order of 9 × 10−3 S/cm. The performance of the synthesized alkaline membrane is evaluated in a single ADEFC. Commercial Pt–Ru (30 wt %: 15 wt %)/C and Pt (40 wt %)/high surface area carbon (CHSA) from Alfa Aesar, Haverhill, MA, were used for anode and cathode, respectively. The performance of the membrane was further evaluated in a single cell using different grades of membranes containing different glutaraldehyde (GA) concentration, anode and cathode electrocatalyst loading, ethanol concentration, and KOH concentration. The maximum open circuit voltage (OCV) of 0.73 V was obtained at a temperature of 35 °C for anode feed containing 2 M ethanol and 1 M KOH for the membrane crosslinked with 2.5 wt % glutaraldehyde doped with 6 M KOH. The maximum power density of 4.15 mW/cm2 at a current density of 20.69 mA/cm2 was obtained for the same condition. The optimum electrocatalyst loading was 1 mg/cm2 of Pt-Ru/C at the anode and 1 mg/cm2 of Pt/CHSA at the cathode. The performance of KOH-doped chemically crosslinked PVA membrane was comparable with the published literature.

References

References
1.
Andújar
,
J. M.
, and
Segura
,
F.
,
2009
, “
Fuel Cells: History and Updating. A Walk Along two Centuries
,”
Renew. Sust. Energ. Rev.
,
13
(
9
), pp.
2309
2322
.
2.
Kirubakaran
,
A.
,
Jain
,
S.
, and
Nema
,
R. K.
,
2009
, “
A Review on Fuel Cell Technologies and Power Electronic Interface
,”
Renew. Sust. Energ. Rev.
,
13
(
9
), pp.
2430
2440
.
3.
Machado
,
B. S.
,
Chakraborty
,
N.
,
Mamlouk
,
M.
, and
Das
,
P. K.
,
2017
, “
A Three-Dimensional Agglomerate Model of an Anion Exchange Membrane Fuel Cell
,”
ASME J. Electrochem. En. Conv. Stor.
,
15
(
1
), p.
011004
.
4.
Kurzweil
,
P.
,
2009
,
HISTORY | Fuel Cells
,
Encyclopedia of Electrochemical Power Sources
, pp.
579
–5
95
.
5.
Yang
,
J. M.
,
Wang
,
N. C.
, and
Chiu
,
H. C.
,
2014
, “
Preparation and Characterization of Poly(Vinyl Alcohol)/Sodium Alginate Blended Membrane for Alkaline Solid Polymer Electrolytes Membrane
,”
J. Membrane Sci.
,
457
, pp.
139
148
.
6.
Meenakshi
,
S. S.
, and
Ghosh
,
P. C.
,
2017
, “
Study of an Innovative Versatile Flow Design Suitable for Fuel Cells
,”
ASME J. Electrochem. En. Conv. Stor.
,
14
(
4
), p.
041003
.
7.
Klingele
,
M.
,
Moroni
,
R.
,
Vierrath
,
S.
, and
Thiele
,
S.
,
2017
, “
Multiscale Tomography-Based Analysis of Polymer Electrolyte Fuel Cells: Towards a Fully Resolved Gas Diffusion Electrode Reconstruction
,”
ASME J. Electrochem. En. Conv. Stor.
,
15
(
1
), p.
014701
.
8.
Keller
,
S.
,
Özel
,
T.
,
Scherzer
,
A.
,
Gerteisen
,
D.
,
Groos
,
U.
,
Hebling
,
C.
, and
Manoli
,
Y.
,
2018
, “
Characteristic Time Constants Derived From the Low-Frequency Arc of Impedance Spectra of Fuel Cell Stacks
,”
ASME J. Electrochem. En. Conv. Stor.
,
15
(
2
), p.
021002
.
9.
Song
,
S.
,
Zhou
,
W.
,
Liang
,
Z.
,
Cai
,
R.
,
Sun
,
G.
, and
Xin
,
Q.
,
2005
, “
The Effect of Methanol and Ethanol Cross-Over on the Performance of PtRu/C-Based Anode DAFCS
,”
Appl. Catal. B. Environ.
,
55
(
1
), pp.
65
72
.
10.
Yuan
,
W.
,
Han
,
F.
,
Chen
,
Y.
,
Chen
,
W.
,
Hu
,
J.
, and
Tang
,
Y.
,
2018
, “
Enhanced Water Management and Fuel Efficiency of a Fully Passive Direct Methanol Fuel Cell With Super-Hydrophilic/-Hydrophobic Cathode Porous Flow-Field
,”
ASME J. Electrochem. En. Conv. Stor.
,
15
(
3
), p.
031003
.
11.
Yan
,
W. M.
,
Chu
,
H. S.
,
Lu
,
M. X.
,
Weng
,
F. B.
,
Jung
,
G. B.
, and
Lee
,
C. Y.
,
2009
, “
Degradation of Proton Exchange Membrane Fuel Cells due to CO and CO2 Poisoning
,”
J. Power Sources
,
188
(
1
), pp.
141
147
.
12.
Zhou
,
J.
,
Ünlü
,
M.
,
Anestis-Richard
,
I.
, and
Kohl
,
P. A.
,
2010
, “
Crosslinked, Epoxy-Based Anion Conductive Membranes for Alkaline Membrane Fuel Cells
,”
J. Membrane Sci.
,
350
(
1–2
), pp.
286
292
.
13.
Postole
,
G.
, and
Auroux
,
A.
,
2011
, “
The Poisoning Level of Pt/C Catalysts Used in PEM Fuel Cells by the Hydrogen Feed Gas Impurities: The Bonding Strength
,”
Int. J. Hydrogen. Energy
,
36
(
11
), pp.
6817
6825
.
14.
Ibrahim
,
M. A.
,
2013
, “
Electrocatalytic Oxidation of Ethanol at Pd/PANI Electrocatalyst
,”
ASME J. Fuel Cell Sci. Technol.
,
11
(
2
), p.
021001
.
15.
Wang
,
D.
,
Liu
,
J.
,
Wu
,
Z.
,
Zhang
,
J.
,
Su
,
Y.
,
Liu
,
Z.
, and
Xu
,
C.
,
2009
, “
Electrooxidation of Methanol, Ethanol and 1-Propanol on Pd Electrode in Alkaline Medium
,”
Int. J. Electrochem. Sci.
,
4
(
12
), pp.
1672
1678
.
16.
Ong
,
B. C.
,
Kamarudin
,
S. K.
, and
Basri
,
S.
,
2017
, “
Direct Liquid Fuel Cells: A Review
,”
Int. J. Hydrogen Energy
,
42
(
15
), pp.
10142
10157
.
17.
Velisala
,
V.
,
Srinivasulu
,
G. N.
,
Reddy
,
B. S.
, and
Rao
,
K. V. K.
,
2015
, “
Review on Challenges of Direct Liquid Fuel Cells for Portable Application
,”
World J. Eng.
,
12
(
6
), pp.
591
606
.
18.
Huang
,
J.
, and
Faghri
,
A.
,
2014
, “
Comparison of Alkaline Direct Ethanol Fuel Cells With and Without Anion Exchange Membrane
,”
ASME J. Fuel Cell Sci. Technol.
,
11
(
5
), p.
051001
.
19.
Couture
,
G.
,
Alaaeddine
,
A.
,
Boschet
,
F.
, and
Ameduri
,
B.
,
2011
, “
Polymeric Materials as Anion-Exchange Membranes for Alkaline Fuel Cells
,”
Prog. Polym. Sci.
,
36
(
11
), pp.
1521
1557
.
20.
Maiti
,
J.
,
Kakati
,
N.
,
Lee
,
S. H.
,
Viswanathan
,
B.
, and
Yoon
,
Y. S.
,
2012
, “
Where do Poly(vinyl alcohol) Based Membranes Stand in Relation to Nafion® for Direct Methanol Fuel Cell Applications?
,”
J. Power Sources
,
216
, pp.
48
66
.
21.
Merle
,
G.
,
Wessling
,
M.
, and
Nijmeijer
,
K.
,
2011
, “
Anion Exchange Membranes for Alkaline Fuel Cells: A Review
,”
J. Membrane Sci.
,
377
(
1–2
), pp.
1
35
.
22.
Kang
,
J. J.
,
Li
,
W. Y.
,
Lin
,
Y.
,
Li
,
X. P.
,
Xiao
,
X. R.
, and
Fang
,
S. B.
,
2004
, “
Synthesis and Ionic Conductivity of a Polysiloxane Containing Quaternary Ammonium Groups
,”
Polym. Adv. Technol.
,
15
, pp.
61
64
.
23.
Pan
,
J.
,
Lu
,
S.
,
Li
,
Y.
,
Huang
,
A.
,
Zhuang
,
L.
, and
Lu
,
J.
,
2010
, “
High-Performance Alkaline Polymer Electrolyte for Fuel Cell Applications
,”
Adv. Funct. Mater.
,
20
, pp.
312
319
.
24.
Yi
,
F.
,
Yang
,
X.
,
Li
,
Y.
, and
Fang
,
S.
,
1999
, “
Synthesis and Ion Conductivity of Poly(oxyethylene) Methacrylates Containing a Quaternary Ammonium Group
,”
Polym. Adv. Technol.
,
10
, pp.
473
475
.
25.
Zugic
,
D. L.
,
Perovic
,
I. M.
,
Nikolic
,
V. M.
,
Maslovara
,
S. L.
, and
Kaninski
,
M. P. M.
,
2013
, “
Enhanced Performance of the Solid Alkaline Fuel Cell Using PVA-KOH Membrane
,” ,
8
, pp.
949
957
.
26.
Lewandowski
,
A.
,
Skorupska
,
K.
, and
Malinska
,
J.
,
2000
, “
Novel Poly(Vinyl Alcohol)–KOH–H2O Alkaline Polymer Electrolyte
,”
Solid State Ionics
,
133
(
3–4
), pp.
265
271
.
27.
Yang
,
C. C.
, and
Lin
,
S. J.
,
2002
, “
Preparation of Composite Alkaline Polymer Electrolyte
,”
Mater. Lett.
,
57
, pp.
873
888
.
28.
Wu
,
Q.
,
Zhang
,
J.
, and
Sang
,
S.
,
2008
, “
Preparation of Alkaline Solid Polymer Electrolyte Based on PVA–TiO2–KOH–H2O and Its Performance in Zn–Ni Battery
,”
J. Phys. Chem. Solids
,
69
(
11
), pp.
2691
2695
.
29.
Yang
,
C. C.
,
Lin
,
S. J.
, and
Hsu
,
S. T.
,
2003
, “
Synthesis and Characterization of Alkaline Polyvinyl Alcohol and Poly(Epichlorohydrin) Blend Polymer Electrolytes and Performance in Electrochemical Cells
,”
J. Power Sources
,
122
(
2
), pp.
210
218
.
30.
Herranz
,
D.
,
Escudero-Cid
,
R.
,
Montiel
,
M.
,
Palacio
,
C.
,
Fatas
,
E.
, and
Ocon
,
P.
,
2018
, “
Poly (Vinyl Alcohol) and Poly (Benzimidazole) Blend Membranes for High Performance Alkaline Direct Ethanol Fuel Cells
,”
Renew. Energy
,
122
, pp.
883
895
.
31.
Gupta
,
U. K.
, and
Pramanik
,
H.
,
2018
, “
Physically Crosslinked KOH Impregnated Polyvinyl Alcohol Based Alkaline Membrane for Direct Methanol Fuel Cell
,”
Can. J. Chem. Eng.
,
96
(
9
), pp.
1888
1895
.
32.
Merle
,
G.
,
Wessling
,
M.
, and
Nijmeijer
,
K.
,
2012
, “
New Cross-Linked PVA Based Polymer Electrolyte Membranes for Alkaline Fuel Cells
,”
J. Membrane Sci.
,
409–410
, pp.
191
199
.
33.
Tripathi
,
B. P.
,
Kumar
,
M.
, and
Shahi
,
V. K.
,
2010
, “
Organic-Inorganic Hybrid Alkaline Membranes by Epoxide Ring Opening for Direct Methanol Fuel Cell Applications
,”
J. Membrane Sci.
,
360
, pp.
90
101
.
34.
Wu
,
Y.
,
Wu
,
C.
,
Li
,
Y.
,
Xu
,
T.
, and
Fu
,
Y.
,
2010
, “
PVA–Silica Anion- Exchange Hybrid Membranes Through a Copolymer Crosslinking Agent
,”
J. Membrane Sci.
,
350
(
1–2
), pp.
322
332
.
35.
Fu
,
J.
,
Qiao
,
J.
,
Wang
,
X.
,
Ma
,
J.
, and
Okada
,
T.
,
2010
, “
Alkali Doped Poly(Vinyl Alcohol) for Potential Fuel Cell Applications
,”
Synth. Met.
,
160
(
1–2
), pp.
193
199
.
36.
Choudhury
,
N. A.
,
Prashant
,
S. K.
,
Pitchumani
,
S.
,
Srodhar
,
P.
, and
Shukla
,
A. K.
,
2009
, “
Poly(Vinyl Alcohol) Hydrogel Membrane as Electrolyte for Direct Borohydride Fuel Cells
,”
J. Chem. Sci.
,
121
(
5
), pp.
647
654
.
37.
Diaz
,
L. A.
,
Coppola
,
R. E.
,
Abuin
,
G. C.
,
Escudero-Cid
,
R.
,
Herranz
,
D.
, and
Ocón
,
P.
,
2017
, “
Alkali-Doped Polyvinyl Alcohol–Polybenzimidazole Membranes for Alkaline Water Electrolysis
,”
J. Membrane Sci.
,
535
, pp.
45
55
.
38.
Yang
,
J. M.
, and
Chiu
,
H. C.
,
2012
, “
Preparation and Characterization of Polyvinyl Alcohol/Chitosan Blended Membrane for Alkaline Direct Methanol Fuel Cells
,”
J. Membrane Sci.
,
419–420
, pp.
65
71
.
39.
Gupta
,
U. K.
, and
Pramanik
,
H.
,
2018
, “
Electrooxidation Study of Pure Ethanol/Methanol and Their Mixture for the Application in Direct Alcohol Alkaline Fuel Cells (DAAFCs)
,”
Int. J. Hydrogen Energy
,
44
(
1
), pp.
421
435
.
40.
Philipp
,
W. H.
, and
Hsu
,
L. C.
,
1979
, “
Three Methods for In Situ Cross-Linking of Polyvinyl Alcohol Films for Application as Ion-Conducting Membranes in Potassium Hydroxide Electrolyte
,”
Scientific and Technical Information Office (NASA)
, Report No. 1407.
41.
An
,
L.
,
Zhao
,
T. S.
,
Wu
,
Q. X.
, and
Zeng
,
L.
,
2012
, “
Comparison of Different Types of Membrane in Alkaline Direct Ethanol Fuel Cells
,”
Int. J. Hydrogen Energy
,
37
, pp.
14536
14542
.
42.
Karimi
,
G.
, and
Li
,
X.
,
2005
, “
Electroosmotic Flow Through Polymer Electrolyte Membranes in PEM Fuel Cells
,”
J. Power Sour.
,
140
, pp.
1
11
.
43.
Basu
,
S.
,
Agarwal
,
A.
, and
Pramanik
,
H.
,
2008
, “
Improvement in Performance of a Direct Ethanol Fuel Cell: Effect of Sulfuric Acid and Ni-Mesh
,”
Electrochem. Commun.
,
10
, pp.
1254
1257
.
44.
Larminie
,
J.
, and
Dicks
,
A.
,
2003
,
Fuel Cell Systems Explained
,
2nd
ed.,
John Wiley & Sons
,
Sussex
, p.
53
.
45.
Pramanik
,
H.
,
Wragg
,
A. A.
, and
Basu
,
S.
,
2008
, “
Studies of Some Operating Parameters and Cyclic Voltammetry for a Direct Ethanol Fuel Cell
,”
J. Appl. Electrochem.
,
38
(
9
), pp.
1321
1328
.
46.
Maya-Cornejo
,
J.
,
Carrera-Cerritos
,
R.
,
Sebastian
,
D.
,
Ledesma-Garcia
,
J.
,
Arriaga
,
L. J.
, and
Arico
,
A. S.
,
2017
, “
PtCu Catalyst for the Electro-Oxidation of Ethanol in an Alkaline Direct Alcohol Fuel Cell
,”
Int. J. Hydrogen. Energy
,
42
, pp.
27919
27928
.
47.
Zakaria
,
Z.
,
Kamarudin
,
S. K.
, and
Timmiati
,
S. N.
,
2019
, “
Influence of Graphene Oxide on the Ethanol Permeability and Ionic Conductivity of QPVA-Based Membrane in Passive Alkaline Direct Ethanol Fuel Cells
,”
Nano. Res. Lett.
,
14
, pp.
1
18
.
48.
Yang
,
C. C.
,
Chiu
,
S. J.
, and
Lee
,
K. T.
,
2008
, “
Study of Poly(Vinylalcohol)/Titanium Oxide Composite Polymer Membranes and their Application on alkAline Direct Alcohol Fuel Cell
,”
J. Power. Sour.
,
184
, pp.
44
51
.
You do not currently have access to this content.