The ejectors used for the fuel cell recirculation are more reliable and low cost in maintenance than high-temperature blowers. In this paper, an anode and cathode recirculation scheme, equipped with ejectors, was designed in a solid oxide fuel cell-gas turbine (SOFC-GT) hybrid system. The ejector model, SOFC model, and other component models and the validation were conducted to investigate the performance of the hybrid system with anode and cathode ejectors. The geometric parameters of the ejectors were designed to perform the anode and cathode recirculation loops according to the design conditions of the hybrid system with a blower-based recirculation loop. The cathode ejector geometries are much larger than the anode ejector. In addition, the sensitivity analysis of the primary fluid for the standalone anode and cathode ejectors is investigated. The results show that the ejector can recirculate more secondary fluid by reducing the ejector outlet pressure. Then, the anode and cathode ejectors were integrated into the SOFC-GT hybrid system. A blower gets involved downstream, and the compressor is necessary to avoid high expensive cost of redesigning compressor. The off-design and dynamic performance were characterized after integrating the anode and cathode ejectors into the hybrid system. The dynamic and off-design performances show that the designed ejectors are effectively integrated into the anode and cathode recirculation loops to replace the blower-based recirculation loops. The safety range of relative fuel flow rate is 0.62–1.22 in the fixed rotational speed strategy, and it is 0.53–1.1 in the variable rotational speed strategy. The variable rotational speed strategy can ensure higher system efficiency, which is more than 61% at a part-load condition.

References

References
1.
EIA
,
2016
, “
International Energy Outlook 2016
,”
Washington, DC
, No. DOE/EIA-0484(2016).
2.
Capellán-Pérez
,
I.
,
Mediavilla
,
M.
,
de Castro
,
C.
,
Carpintero
,
Ó.
, and
Miguel
,
L. J.
,
2014
, “
Fossil Fuel Depletion and Socio-Economic Scenarios: An Integrated Approach
,”
Energy
,
77
, pp.
641
666
.
3.
Hoel
,
M.
, and
Kverndokk
,
S.
,
1996
, “
Depletion of Fossil Fuels and the Impacts of Global Warming
,”
Resour. Energy Econ.
,
18
(
2
), pp.
115
136
.
4.
Harun
,
N. F.
,
Tucker
,
D.
, and
Adams
,
T. A.
,
2017
, “
Open Loop and Closed Loop Performance of Solid Oxide Fuel Cell Turbine Hybrid Systems During Fuel Composition Changes
,”
ASME J. Eng. Gas Turb. Power
,
139
(
6
), p.
061702
.
5.
Ferrari
,
M. L.
,
2011
, “
Solid Oxide Fuel Cell Hybrid System: Control Strategy for Stand-Alone Configurations
,”
J. Power Sources
,
196
(
5
), pp.
2682
2690
.
6.
Larosa
,
L.
,
Traverso
,
A.
,
Ferrari
,
M. L.
, and
Zaccaria
,
V.
,
2015
, “
Pressurized SOFC Hybrid Systems: Control System Study and Experimental Verification
,”
ASME J. Eng. Gas Turb. Power
,
137
(
3
), p.
031602
.
7.
Zaccaria
,
V.
,
Branum
,
Z.
, and
Tucker
,
D.
,
2017
, “
Fuel Cell Temperature Control With a Pre-Combustor in SOFC Gas Turbine Hybrids During Load Changes
,”
ASME J. Electrochem. Energy Conv. Storage
,
14
(
3
), p.
031006
.
8.
Rossi
,
I.
,
Traverso
,
A.
,
Hohloch
,
M.
,
Huber
,
A.
, and
Tucker
,
D.
,
2018
, “
Physics-Based Dynamic Models of Three SOFC/GT Emulator Test Rigs
,”
ASME J. Eng. Gas Turb. Power
,
140
(
5
), p.
051702
.
9.
Ferrari
,
M. L.
,
Bernardi
,
D.
, and
Massardo
,
A. F.
,
2006
, “
Design and Testing of Ejectors for High Temperature Fuel Cell Hybrid Systems
,”
ASME J. Fuel Cell Sci. Technol.
,
3
(
3
), pp.
284
291
.
10.
Ferrari
,
M. L.
,
Traverso
,
A.
, and
Massardo
,
A. F.
,
2004
, “
Transient Analysis of Solid Oxide Fuel Cell Hybrids: Part B—Anode Recirculation Model
,”
ASME Turbo Expo 2004: Power for Land, Sea, and Air
,
American Society of Mechanical Engineers
,
New York
, pp.
399
407
.
11.
Maclay
,
J. D.
,
Brouwer
,
J.
, and
Samuelsen
,
G. S.
,
2011
, “
Development of a Dynamic Cathode Ejector Model for Solid Oxide Fuel Cell-Gas Turbine Hybrid Systems
,”
ASME J. Fuel Cell Sci. Technol.
,
8
(
5
), p.
051013
.
12.
Agnew
,
G.
,
Bozzolo
,
M.
,
Moritz
,
R. R.
, and
Berenyi
,
S.
,
2005
, “
The Design and Integration of the Rolls-Royce Fuel Cell Systems 1MW SOFC
,”
ASME Turbo Expo 2005: Power for Land, Sea, and Air
,
American Society of Mechanical Engineers
,
New York
, pp.
801
806
.
13.
Engelbracht
,
M.
,
Peters
,
R.
,
Blum
,
L.
, and
Stolten
,
D.
,
2015
, “
Comparison of a Fuel-Driven and Steam-Driven Ejector in Solid Oxide Fuel Cell Systems With Anode Off-Gas Recirculation: Part-Load Behavior
,”
J. Power Sources
,
277
, pp.
251
260
.
14.
Zhu
,
Y.
,
Cai
,
W.
,
Wen
,
C.
, and
Li
,
Y.
,
2007
, “
Fuel Ejector Design and Simulation Model for Anodic Recirculation SOFC System
,”
J. Power Sources
,
173
(
1
), pp.
437
449
.
15.
Traverso
,
A.
,
Trasino
,
F.
,
Magistri
,
L.
, and
Massardo
,
A. F.
,
2008
, “
Time Characterization of the Anodic Loop of a Pressurized Solid Oxide Fuel Cell System
,”
ASME J. Eng. Gas Turb. Power
,
130
(
2
), p.
021702
.
16.
Baba
,
S.
,
Kobayashi
,
N.
,
Takahashi
,
S.
, and
Hirano
,
S.
,
2015
, “
Development of Anode Gas Recycle System Using Ejector for 1 kW Solid Oxide Fuel Cell
,”
ASME J. Eng. Gas Turb. Power
,
137
(
2
), p.
021504
.
17.
Marsano
,
F.
,
Magistri
,
L.
, and
Massardo
,
A. F.
,
2004
, “
Ejector Performance Influence on a Solid Oxide Fuel Cell Anodic Recirculation System
,”
J. Power Sources
,
129
(
2
), pp.
216
228
.
18.
Larosa
,
L.
,
Ferrari
,
M. L.
,
Magistri
,
L.
, and
Massardo
,
A. F.
,
2013
, “
SOFC/mGT Coupling: Different Options With Standard Boosters
,”
ASME Turbo Expo 2013: Turbine Technical Conference and Exposition
,
American Society of Mechanical Engineers
,
New York
, ASME Paper No. GT2013-94072.
19.
Zhang
,
W.
,
2012
,
The Simulation of the Novel Hybrid System of Solid Oxide Fuel Cell and Gas Turbine
,
Shanghai Jiao Tong University
,
Shanghai
.
20.
Agnew
,
G. D.
,
Townsend
,
J.
,
Moritz
,
R. R.
,
Bozzolo
,
M.
,
Berenyi
,
S.
, and
Duge
,
R.
,
2004
, “
Progress in the Development of a Low Cost 1MW SOFC Hybrid
,”
ASME Turbo Expo 2004: Power for Land, Sea, and Air
,
American Society of Mechanical Engineers
,
New York
, pp.
297
300
.
21.
Ferrari
,
M. L.
,
Pascenti
,
M.
,
Magistri
,
L.
, and
Massardo
,
A. F.
,
2011
, “
MGT/HTFC Hybrid System Emulator Test Rig: Experimental Investigation on the Anodic Recirculation System
,”
ASME J. Fuel Cell Sci. Technol.
,
8
(
2
), p.
021012
.
22.
Chen
,
J.
,
Zhang
,
H.
, and
Weng
,
S.
,
2017
, “
Study on Nonlinear Identification SOFC Temperature Model Based on Particle Swarm Optimization-Least Squares Support Vector Regression
,”
ASME J. Electrochem. Energy Conv. Storage
,
14
(
3
), p.
031003
.
23.
Stiller
,
C.
,
Thorud
,
B.
,
Bolland
,
O.
,
Kandepu
,
R.
, and
Imsland
,
L.
,
2006
, “
Control Strategy for a Solid Oxide Fuel Cell and Gas Turbine Hybrid System
,”
J. Power Sources
,
158
(
1
), pp.
303
315
.
24.
Stiller
,
C.
,
Thorud
,
B.
, and
Bolland
,
O.
,
2006
, “
Safe Dynamic Operation of a Simple SOFC/GT Hybrid System
,”
ASME J. Eng. Gas Turb. Power
,
128
(
3
), pp.
551
559
.
25.
Stiller
,
C.
,
2006
,
Design, Operation and Control Modelling of SOFC/GT Hybrid Systems
,
Norwegian University of Science and Technology
,
Norwegian
.
26.
Ferrari
,
M. L.
,
Traverso
,
A.
, and
Massardo
,
A. F.
,
2004
, “
Transient Analysis of Solid Oxide Fuel Cell Hybrids: Part B—Anode Recirculation Model
,”
ASME Turbo Expo 2004: Power for Land, Sea, and Air
,
American Society of Mechanical Engineers
,
Vienna
, ASME Paper No. GT2004-53716.
27.
Lv
,
X.
,
Lu
,
C.
,
Zhu
,
X.
, and
Weng
,
Y.
,
2015
, “
Safety Analysis of a Solid Oxide Fuel Cell/Gas Turbine Hybrid System Fueled With Gasified Biomass
,”
ASME J. Fuel Cell Sci. Technol.
,
12
(
1
), p.
011008
.
28.
Zhang
,
H.
,
Weng
,
S.
,
Su
,
M.
, and
Zhang
,
W.
,
2010
, “
Control Performance Study on the Molten Carbonate Fuel Cell Hybrid Systems
,”
ASME J. Fuel Cell Sci. Technol.
,
7
(
6
), p.
061006
.
29.
Wang
,
L.
,
Zhang
,
H.
, and
Weng
,
S.
,
2008
, “
Modeling and Simulation of Solid Oxide Fuel Cell Based on the Volume-Resistance Characteristic Modeling Technique
,”
J. Power Sources
,
177
(
2
), pp.
579
589
.
You do not currently have access to this content.